Corrigendum to “Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics” [Biomaterials 192 (2019) 551–559]
Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics
Abstract Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus , Klebsiella pneumoniae or Enterococcus faecalis . Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentia…