0000000000161555

AUTHOR

Dave M Newbold

Spectra and correlations of Λ andΛ¯produced in 340-GeV/cΣ−+Cand 260-GeV/cn+Cinteractions

We have measured the production of strange baryons and antibaryons in 340-GeV/c Sigma /sup -/+C and 260-GeV/c n+C interactions. The single x/sub F/ distributions show the expected leading particle effect, and the single p/sub t//sup 2/ distributions show a distinct nonthermal behavior. The x/sub F/ distributions of Lambda - Lambda pairs indicate two different phase space distributions for the two coincident baryons. On the other hand two Lambda 's show identical distributions. Momentum conservation during the formation process may represent a significant source for the observed behavior.

research product

Volume IV The DUNE far detector single-phase technology

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

research product

Search for the exoticΞ−−(1860)resonance in340GeV∕cΣ−-nucleus interactions

We report on a high statistics search for the ${\ensuremath{\Xi}}^{\ensuremath{-}\ensuremath{-}}(1860)$ resonance in ${\ensuremath{\Sigma}}^{\ensuremath{-}}$-nucleus collisions at $340\phantom{\rule{0.3em}{0ex}}\mathrm{GeV}∕c$. No evidence for this resonance is found in our data sample which contains 676000 ${\ensuremath{\Xi}}^{\ensuremath{-}}$ candidates above background. For the decay channel ${\ensuremath{\Xi}}^{\ensuremath{-}\ensuremath{-}}(1860)\ensuremath{\rightarrow}{\ensuremath{\Xi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{\ensuremath{-}}$ and the kinematic range $0.15l{x}_{F}l0.9$ we find a $3\ensuremath{\sigma}$ upper limit for the production cross section of 3.1 and $3.5\phantom{\rul…

research product

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

research product

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

research product

Volume I. Introduction to DUNE

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

research product

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

research product

Volume III. DUNE far detector technical coordination

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

research product