PROTEIN SECONDARY STRUCTURE PREDICTION: HOW TO IMPROVE ACCURACY BY INTEGRATION
In this paper a technique to improve protein secondary structure prediction is proposed. The approach is based on the idea of combining the results of a set of prediction tools, choosing the most correct parts of each prediction. The correctness of the resulting prediction is measured referring to accuracy parameters used in several editions of CASP. Experimental evaluations validating the proposed approach are also reported.
JSSPrediction: a Framework to Predict Protein Secondary Structures Using Integration
Identifying protein secondary structures is a difficult task. Recently, a lot of software tools for protein secondary structure prediction have been produced and made available on-line, mostly with good performances. However, prediction tools work correctly for families of proteins, such that users have to know which predictor to use for a given unknown protein. We propose a framework to improve secondary structure prediction by integrating results obtained from a set of available predictors. Our contribution consists in the definition of a two phase approach: (i) select a set of predictors which have good performances with the unknown protein family, and (ii) integrate the prediction resul…
Protein Structure Metapredictors
Experimental Evaluation of Protein Secondary Structure Predictors
Understanding protein biological function is a key issue in modern biology, which is largely determined by its 3D shape. Protein 3D shape, in its turn, is functionally implied by its amino acid sequence. Since the direct inspection of such 3D structures is rather expensive and time consuming, a number of software techniques have been developed in the last few years that predict a spatial model, either of the secondary or of the tertiary form, for a given target protein starting from its amino acid sequence. This paper offers a comparison of several available automatic secondary structure prediction tools. The comparison is of the experimental kind, where two relevant sets of proteins, a non…
Improving protein secondary structure predictions by prediction fusion
Protein secondary structure prediction is still a challenging problem at today. Even if a number of prediction methods have been presented in the literature, the various prediction tools that are available on-line produce results whose quality is not always fully satisfactory. Therefore, a user has to know which predictor to use for a given protein to be analyzed. In this paper, we propose a server implementing a method to improve the accuracy in protein secondary structure prediction. The method is based on integrating the prediction results computed by some available on-line prediction tools to obtain a combined prediction of higher quality. Given an input protein p whose secondary struct…