0000000000164557

AUTHOR

Armando Beltrán

showing 2 related works from this author

High-pressure study of the behavior of mineral barite by x-ray diffraction

2011

In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and…

DiffractionPhase transitionMaterials scienceHigh-pressureAnalytical chemistryDensityHigh pressure (Technology)BaSO4symbols.namesakeBariteCationsPhase (matter)Barium compoundsCompostos de bariRamanMineralTemperatureOxidesTecnologia de les altes pressionsCondensed Matter PhysicsX-ray diffractionElectronic Optical and Magnetic MaterialsFISICA APLICADAHigh pressureTransitionX-ray crystallographysymbolsOrthorhombic crystal systemRaman spectroscopyBASO4Physical Review B
researchProduct

Pressure-induced phase transitions in AgClO4

2011

11 pags, 9 figs, 4 tabs. -- PACS number(s): 62.50.−p, 64.70.K−, 61 .50.Ks, 64.30.−t

Chemical Physics (physics.chem-ph)Condensed Matter - Materials SciencePhase transitionMaterials scienceCondensed matter physicsEquation of state (cosmology)Materials--Propietats mecàniquesMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesOrder (ring theory)Condensed Matter PhysicsX-ray diffractionElectronic Optical and Magnetic MaterialsAgClO4Condensed Matter::Materials ScienceTetragonal crystal systemPhysics - Chemical PhysicsX-ray crystallographyPressureCondensed Matter::Strongly Correlated ElectronsOrthorhombic crystal systemDensity functional theoryMaterials--Mechanical propertiesMonoclinic crystal system
researchProduct