0000000000164782

AUTHOR

Seth M. Cohen

showing 14 related works from this author

Search for relativistic magnetic monopoles with IceCube

2012

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits$ for $\beta\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass …

FLUXSELECTIONAMANDANuclear and High Energy PhysicsParticle physicsProton decayCherenkov detectorPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleFOS: Physical sciencesddc:500.201 natural scienceslaw.inventionIceCube Neutrino ObservatoryPhysics::GeophysicsIceCubelaw0103 physical sciencesGrand Unified Theoryddc:530NEUTRINO TELESCOPE010306 general physicsCherenkov radiationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsFIELDS85-05Physics and AstronomyNeutrino detectorAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The design and performance of IceCube DeepCore

2011

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector a…

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAntarticaGeneratorAstrophysicsNeutrino telescope01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryAntarctica; DeepCore; Detector; IceCube; NeutrinoIceCubeHigh Energy Physics - Experiment (hep-ex)WIMP0103 physical sciencesNeutrino010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsMuon010308 nuclear & particles physicsIceICEAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsDetectorInstrumentation and Detectors (physics.ins-det)GENERATORDeepCoreSupernovaAir showerPhysics and AstronomyNeutrino detector13. Climate actionddc:540AntarcticaHigh Energy Physics::ExperimentNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube

2012

Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003

Knee regionAstrophysicsTracking (particle physics)01 natural sciencesParticle identificationIceCubeTRACKINGWATERCherenkovNeutrino energyNEUTRINO TELESCOPEUltra-high-energy cosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSEADetectorAstrophysics::Instrumentation and Methods for AstrophysicsLIGHTComposition; Cosmic rays; Energy spectrum; IceCube; IceTop; Knee regionddc:540IceTopPARTICLE IDENTIFICATIONAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsIceCube detectorCompositionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2IceCube Neutrino ObservatorySEARCHESAccelerationcosmic raysdE/dx0103 physical sciences010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationTruncated meanMuon energy010308 nuclear & particles physicsAstronomyAstronomy and Astrophysics540Physics and AstronomycompositionEnergy SpectrumTEVEnergy spectrum
researchProduct

First Observation of PeV-Energy Neutrinos with IceCube

2013

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. T…

SELECTIONParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayddc:500.201 natural sciencesCHARMIceCube Neutrino Observatory0103 physical sciencesddc:550SCATTERING010303 astronomy & astrophysicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyICEGlashow resonancePERFORMANCE3. Good healthPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsBar (unit)
researchProduct

An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts

2012

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

Physics::Instrumentation and DetectorsAstronomyAstrophysics::High Energy Astrophysical PhenomenaElectronvoltFOS: Physical sciencesFluxhigh-energy neutrinosCosmic rayddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesddc:070IcecubeAccelerationPioncosmic rays0103 physical sciencesTelescope010303 astronomy & astrophysicsVery EnergeticHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFluxMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySearchAstrophysics::Instrumentation and Methods for Astrophysics13. Climate actionGamma Ray BurstsHigh Energy Physics::ExperimentNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaNATURE
researchProduct

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

2013

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from …

Nuclear and High Energy PhysicsTELESCOPEPoint sourcePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsddc:500.201 natural sciences7. Clean energyIceCube Neutrino ObservatoryIceCubeHESS0103 physical sciencesddc:530MILAGRO010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsPLANEGalactic planeAir showerPhysics and Astronomy13. Climate actionDISCOVERYMilagroMOLECULAR CLOUDSTEVRADIATIONHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEMISSION
researchProduct

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

2010

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by oth…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsParticle physicsMuonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesSolar neutrino problemHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Sidereal timeMeasurements of neutrino speedddc:530High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaNeutrino oscillation
researchProduct

All-particle cosmic ray energy spectrum measured with 26 IceTop stations

2012

Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatory0103 physical sciencesCosmic rays010303 astronomy & astrophysicsZenithPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmic rays; Energy spectrum; IceCube; IceTopSpectral indexCOSMIC cancer database010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysics540Air showerKASCADEddc:540IceTopEnergy spectrumNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae ( Corrigendum )

2014

Keywords: neutrinos ; supernovae: general ; instrumentation: detectors ; errata ; addenda Reference EPFL-ARTICLE-198916doi:10.1051/0004-6361/201117810eView record in Web of Science Record created on 2014-05-19, modified on 2017-05-12

PhysicsSupernovaLow energyWeb of scienceSpace and Planetary Scienceddc:520Astronomy and AstrophysicsAstrophysicsInstrumentation (computer programming)Sensitivity (control systems)Neutrino
researchProduct

Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

2011

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding …

Nuclear and High Energy PhysicsParticle physicsLimitsAstrophysics::High Energy Astrophysical PhenomenaDark matterCaptureFOS: Physical sciencesAstrophysicsSouth-Poleddc:500.201 natural sciences7. Clean energyIceCubeHigh Energy Physics - ExperimentLIMITSHigh Energy Physics - Experiment (hep-ex)SOUTH-POLE0103 physical sciencesPARTICLESddc:530Limit (mathematics)010306 general physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsICEDetectorIceSupersymmetryCAPTUREParticlesPhysics and AstronomyNeutrino detectorNeutralinoHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

IceTop : the surface component of IceCube

2012

IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an …

FLUXNuclear and High Energy PhysicsAir showerPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower; Cosmic rays; Detector; IceCube; IceTopFOS: Physical sciencesCosmic rayddc:500.27. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubeShowerData acquisitioncosmic raysDIGITIZATION0103 physical sciencesSHOWERSCalibrationddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysRemote sensingPhysicsMuondetector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyDetectorENERGY-SPECTRUMAir showerPhysics and AstronomySIMULATIONIceTopHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector.

2009

A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250 - 5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energyNuclear physicsWIMP0103 physical sciencesddc:550010306 general physicsNeutrino oscillationNeutrino TelescopeHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonAnnihilation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino detector13. Climate actionNeutralinoHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical review letters
researchProduct

Search for ultrahigh-energy tau neutrinos with IceCube

2012

The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25  km3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60±0.19(stat)+0.56−0.58(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E2νΦ90(νx)<16.3×10−8  GeV cm−2…

SELECTIONAMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESCosmic rayddc:500.2PROPAGATIONAstrophysicsElectron01 natural sciencesAmanda0103 physical sciencesEARTHddc:530Ultrahigh energy010306 general physicsPropagationSelectionPhysicsRange (particle radiation)Muon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsEarthPhysics and AstronomyInduced CascadesTELESCOPESHigh Energy Physics::ExperimentNeutrinoTelescopes
researchProduct

Extending the search for neutrino point sources with iceCube above the horizon

2009

Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmosp…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Point source[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics01 natural sciencesDeclination[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]muon0103 physical sciencesNeutrinoJetsddc:550010303 astronomy & astrophysicsCosmic raysTelescopemedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysics010308 nuclear & particles physicsHorizon[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pionAstrophysics::Instrumentation and Methods for Astrophysicsand other elementary particlesDetectorcosmic ray detectorsand other elementary particle detectorsGamma-RaysNeutrino detector13. Climate actionSkyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLepton
researchProduct