0000000000164894

AUTHOR

Zbyněk Malenovský

0000-0002-1271-8103

showing 7 related works from this author

Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level

2019

Imaging and non-imaging spectroscopy employed in the field and from aircraft is frequently used to assess biochemical, structural, and functional plant traits, as well as their dynamics in an environmental matrix. With the increasing availability of high-resolution spectroradiometers, it has become feasible to measure fine spectral features, such as those needed to estimate sun-induced chlorophyll fluorescence (F), which is a signal related to the photosynthetic process of plants. The measurement of F requires highly accurate and precise radiance measurements in combination with very sophisticated measurement protocols. Additionally, because F has a highly dynamic nature (compared with othe…

VegetationUFSP13-8 Global Change and BiodiversityFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTREScienceQ1900 General Earth and Planetary SciencesGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERASun-induced fluorescence; Spectroradiometer; Spectrometer; Vegetation; Radiance; Reflectance; Remote sensing; FLEXReflectanceRadianceRemote sensingSpectrometerGEO/11 - GEOFISICA APPLICATAFLEX10122 Institute of GeographyGEO/10 - GEOFISICA DELLA TERRA SOLIDASun-induced fluorescenceSpectroradiometerGeneral Earth and Planetary Sciencesddc:620910 Geography & travel
researchProduct

Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies

2019

Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through…

Canopy010504 meteorology & atmospheric sciencesUFSP13-8 Global Change and BiodiversityVegetation15. Life on land010502 geochemistry & geophysics01 natural sciencesArticleImaging spectroscopy10122 Institute of GeographyGeophysicsSpectroradiometer13. Climate actionGeochemistry and Petrology1906 Geochemistry and PetrologyRadiative transferMeasurement uncertaintyEnvironmental scienceSatellite910 Geography & travel1908 GeophysicsLeaf area index0105 earth and related environmental sciencesRemote sensing
researchProduct

Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

2019

An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegeta…

Data streamEarth observation010504 meteorology & atmospheric sciencesComputer scienceUT-Hybrid-D010502 geochemistry & geophysicscomputer.software_genreQuantitative Biology - Quantitative Methods01 natural sciencesArticleGeochemistry and PetrologyFOS: Electrical engineering electronic engineering information engineeringQuantitative Methods (q-bio.QM)0105 earth and related environmental sciencesParametric statisticsData stream miningImage and Video Processing (eess.IV)Electrical Engineering and Systems Science - Image and Video Processing15. Life on land22/4 OA procedureRegressionImaging spectroscopyGeophysicsSpectroradiometer13. Climate actionMulticollinearityFOS: Biological sciencesITC-ISI-JOURNAL-ARTICLEData miningcomputerSurveys in Geophysics
researchProduct

Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

2021

Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-in…

0106 biological sciencesklorofylliChlorophyll a010504 meteorology & atmospheric sciencesEarth scienceEcology (disciplines)Plant Scienceekofysiologia01 natural sciencesFluorescencebiofysiikkayhteyttäminenchemistry.chemical_compoundLEAFLEAVESWATERPhotosynthesisCO2 ASSIMILATIONSCOTS PINE[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentMolecular Biology0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereChlorophyll ASUN-INDUCED FLUORESCENCEfluoresenssiBiogeochemistrykasvillisuus15. Life on land11831 Plant biologyReflectivityREFLECTANCEPlant LeavesEarth system scienceddc:580RESOLUTIONchemistryPHOTOSYSTEM-I13. Climate actionRemote Sensing TechnologyEarth SciencessatelliittikuvausEnvironmental sciencekaukokartoitus010606 plant biology & botanyNature Plants
researchProduct

In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes

2019

Abstract Regulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment–protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS–NIR, 400–800 nm) after sudden strong natural-like illumination exposure. …

0106 biological sciences0301 basic medicineChlorophyllMaterials sciencePassive chlorophyll a fluorescencePigment–protein dynamicsLightHyperspectral remote sensingAnalytical chemistryJuglansPlant Science01 natural sciencesBiochemistryEnergy quenchingFluorescenceAbsorbance03 medical and health sciencesTransmittanceFiber Optic TechnologySpectroscopyChlorophyll fluorescencechemistry.chemical_classificationSpectroscopy Near-InfraredAbsorbed photosynthetic active radiation (APAR)Non-photochemical quenching (NPQ)Cell BiologyGeneral MedicineEquipment DesignPigments BiologicalPhotochemical ProcessesCarotenoidsPlant LeavesWavelength030104 developmental biologychemistryXanthophyllRadianceOriginal ArticleAbsorbance shiftMorusControlled heat dissipation010606 plant biology & botanyPhotosynthesis Research
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

Impact of Structural, Photochemical and Instrumental Effects on Leaf and Canopy Reflectance Variability in the 500–600 nm Range

2021

Current rapid technological improvement in optical radiometric instrumentation provides an opportunity to develop innovative measurements protocols where the remote quantification of the plant physiological status can be determined with higher accuracy. In this study, the leaf and canopy reflectance variability in the PRI spectral region (i.e., 500–600 nm) is quantified using different laboratory protocols that consider both instrumental and experimental set-up aspects, as well as canopy structural effects and vegetation photoprotection dynamics. First, we studied how an incorrect characterization of the at-target incoming radiance translated into an erroneous vegetation reflectance spectru…

spectroscopyreflectanceproximal sensing; spectroscopy; protocols; irradiance; reflectance; vegetation index; sun-/shade-adapted leaves; xanthophyll cycleirradianceScienceQGeneral Earth and Planetary Sciencesprotocolsproximal sensingvegetation indexRemote Sensing
researchProduct