Manipulation of the Land$\acute{\text{e}}$ g-factor in InAs quantum dots through the application of anisotropic gate potentials: Exact diagonalization, numerical and perturbation methods
We study the variation in the Land$\acute{\text{e}}$ g-factor of electron spins induced by both anisotropic gate potentials and magnetic fields in InAs quantum dots for possible implementation towards solid state quantum computing. In this paper, we present analytical expressions and numerical simulations of the variation in the Land$\acute{\text{e}}$ g-factor for both isotropic and anisotropic quantum dots. Using both analytical techniques and numerical simulations, we show that the Rashba spin-orbit coupling has a major contribution in the variation of the g-factor with electric fields before the regime, where level crossing or anticrossing occurs. In particular, the electric field tunabi…