0000000000165192

AUTHOR

Tommi Brander

showing 10 related works from this author

Recovering a variable exponent

2021

We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.

non-standard growthvariable exponentelliptic equationGeneral Mathematicsquasilinear equationinversio-ongelmatCalderón's problemMathematics - Analysis of PDEsapproximation by polynomialsFOS: Mathematics34A55 (Primary) 41A10 34B15 28A25 (Secondary)inverse problemapproksimointiMüntz-Szász theoremdifferentiaaliyhtälötAnalysis of PDEs (math.AP)Documenta Mathematica
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Optimal recovery of a radiating source with multiple frequencies along one line

2020

We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.

attenuated Radon transformMultispectralRAYUniqueness theorem01 natural sciencesinversio-ongelmat44A10 (Primary) 65R32 44A60 46N40 65Z05 (Secondary)030218 nuclear medicine & medical imaging0302 clinical medicine111 MathematicsDiscrete Mathematics and CombinatoricstietokonetomografiaPharmacology (medical)INVERSIONnuclear medicineBeam hardeningPhysicsLaplace transformDetectorNumerical Analysis (math.NA)Inverse problemuniqueness theoremFunctional Analysis (math.FA)Mathematics - Functional AnalysisMultiplicative system theoremkuvantaminensovellettu matematiikkaModeling and SimulationSPECTLine (geometry)numeerinen analyysipositroniemissiotomografiaemission computed tomographyAttenuated Radon transformEmission computed tomographyControl and OptimizationLaplace transformmultispectralOpen setCollimated light03 medical and health sciencesnuclear medicine.multiplicative system theoremFOS: Mathematicsinverse source problemMathematics - Numerical Analysis0101 mathematicsAttenuation010102 general mathematicsInverse source problemRangingComputational physicsTENSOR TOMOGRAPHYPETbeam hardeningNuclear MedicineAnalysis
researchProduct

Hamilton-Jacobi equations

2012

Tämä Pro gradu-tutkielma käsittelee Hamiltonin ja Jacobin yhtälöitä, jotka kuvaavat mekaanisen järjestelmän kehitystä klassisen mekaniikan puitteissa. Hamiltonin ja Jacobin yhtälöitä käytetään myös säätöteoriassa sekä kvanttimekaniikassa. Hamiltonin mekaaniikan kehitti Sir William Rowan Hamilton valon käytöksen mallintamiseen ja Carl Gustav Jacob Jacobi kehitti sitä edelleen. Tutkielmassa annamme ehdot, joiden nojalla Hopfin ja Laxin kaava antaa ratkaisun Hamiltonin ja Jacobin yhtälöihin liittyvään alkuarvo-ongelmaan. Sen jälkeen määritämme sopivan heikon ratkaisun käsitteen ja näytämme heikkojen ratkaisujen olevan yksikäsitteisiä tietyillä ehdoilla. Lähestymme Hamiltonin ja Jacobin alkuarv…

matematiikkakaavatyhtälöt
researchProduct

Calder\'on's problem for p-Laplace type equations

2016

We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…

Mathematics - Analysis of PDEs35R30 (Primary) 35J92 35R05 35D30 35Q60 35Q79 35J20 35J25 35H99 35A15 35A01 35A02 80A23 (Secondary)
researchProduct

Calderón problem for the p-Laplace equation : First order derivative of conductivity on the boundary

2016

We recover the gradient of a scalar conductivity defined on a smooth bounded open set in Rd from the Dirichlet to Neumann map arising from the p-Laplace equation. For any boundary point we recover the gradient using Dirichlet data supported on an arbitrarily small neighbourhood of the boundary point. We use a Rellich-type identity in the proof. Our results are new when p 6 = 2. In the p = 2 case boundary determination plays a role in several methods for recovering the conductivity in the interior. peerReviewed

Calderón problemp-LaplacianMathematics::Spectral Theory
researchProduct

Superconductive and insulating inclusions for linear and non-linear conductivity equations

2015

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.

Pure mathematicsControl and Optimizationmedia_common.quotation_subjectMathematics::Analysis of PDEsBoundary (topology)probe methodConductivity01 natural sciencesMathematics - Analysis of PDEs35R30 35J92 (Primary) 35H99 (Secondary)FOS: MathematicsDiscrete Mathematics and CombinatoricsPharmacology (medical)Nabla symbol0101 mathematicsmedia_commonp-harmonic functionsLaplace's equationPhysicsPartial differential equationCalderón problemComputer Science::Information Retrieval010102 general mathematicsta111Zero (complex analysis)Infinity3. Good health010101 applied mathematicsNonlinear systeminclusionModeling and Simulationinverse boundary value problemAnalysisinkluusioAnalysis of PDEs (math.AP)enclosure method
researchProduct

A posteriori-virhearvio Uzawan algoritmille Stokesin yhtälön ratkaisemiseksi

2010

Tässä tutkielmassa esitän ensin lyhyesti Sobolevin avaruudet, totean joitakin epäyhtälöitä ja Stokesin yhtälön ajasta riippumattoman, englanniksi stationary, version. Jatkan todistamalla ratkaisun löytymisen Stokesin ongelmaan etsimällä Lagrangen funktion satulapisteen -- tämän todistuksen yksityiskohdat olen tarkastanut itse, vaikka todistus seuraakin hyvin tarkasti S. Repinin kirjasta \cite{repin2008} löytyvää tekstiä. Kappaleessa \ref{aposterioriarvio} kerron lyhyesti a~posteriori-tyylisen virhearvion luonteesta sekä totean erään Stokesin yhtälöä koskevan arvion. Seuraavassa kappaleessa esitän Uzawan algoritmin suoraan Stokesin yhtälöä varten. Viimeisessä kappaleessa esitän vihdoin kaksi…

researchProduct

Calderón's problem for p-laplace type equations

2016

We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ |∇u|p−2 ∇u = 0 with 1 < p < ∞, which reduces to the standard conductivity equation when p = 2. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity σ may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth conductivity on the boundary. We use the enclosure method of Ikehata to recover the…

osittaisdifferentiaaliyhtälötimpedanssitomografiareunamääritysCalderón's problemkotelointimenetelmäCalderónin ongelmainverse problemp-Laplace -yhtälöp-Laplace equationinversio-ongelmatsähkönjohtavuuselectrical impedance tomography
researchProduct

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct