0000000000167223
AUTHOR
Chen Zihan
Environmentally triggered evolutionary cascade across trophic levels in an experimental phage-bacteria-insect system
Abstract Environmental changes can cause strong cascading effects in species communities due to altered biological interactions between species (Zarnetske et al., 2012). Highly specialized interactions arising from the co-evolution of hosts and parasites, such as bacteria and phages, and short generation times of these species could rapidly lead to considerable evolutionary changes in their biotic interactions (Kerr, 2012; Buck and Ripple, 2017), with potential large-scale ramifications to other trophic levels. Here we report experimental evidence of cascading environmental effects across trophic levels in an experimental system where phage-bacteria coevolution in an abiotically altered env…
The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen
AbstractViruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels by using an opportunistic pathogen, the bacterium Serratia marcescens, that harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of …
The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen.
https://doi.org/10.1111/mec.16638 Abstract Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels by using an opportunistic pathogen, the bacterium Serratia marcescens, that harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We furthe…