0000000000170164

AUTHOR

Dzmitry Bychanok

Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application

Composite materials, containing low concentrations of carbon nanotubes (CNTs) of three different diameters and heat-resistant phosphate ceramic as a matrix were prepared by cold-pressing method. Their dielectric properties were studied at room temperature in a wide frequency range (20 Hz–1 MHz). It was found experimentally and proved theoretically via modeling of the composites as a random capacitor–resistor–diode network that electrical percolation concentration depends significantly on the diameter of the nanoinclusions. The main conclusion is that the best candidate providing both the lower percolation threshold and high absolute values of ac conductivity is thinner carbon nanotubes (in …

research product

Dielectric properties of graphite-based epoxy composites

International audience; Composite materials based on epoxy resin filled with various kinds of graphite particles: exfoliated graphite, natural graphite, and coarse, medium and fine artificial graphites have been prepared. Results of broadband dielectric investigations of such materials in wide temperature (25-450 K) and frequency (20 Hz-3 THz) ranges are presented. The dielectric permittivity strongly increases with graphite particle size. The graphite particle size and shape also have a strong impact on freezing temperature, conductivity activation energy and composite electromagnetic absorption properties at room temperature. The lowest percolation threshold is observed for exfoliated gra…

research product

Microwave response properties of epoxy resin composites filled with graphitic fillers

Composite materials based on epoxy resin filled with various kinds of graphite particles: exfoliated graphite (EG), natural graphite, and coarse, medium and fine artificial graphites have been prepared. The dielectric permittivity strongly increases with graphite particle size. This effect is related to the distance of the investigated filler concentrations to the composites' percolation threshold. Microwave experiments show that exfoliated graphite is, out of investigated graphite particles, the only one being a really effective additive for producing electromagnetic (EM) interference (EMI) shielding: 2 wt.% epoxy/EG is absolutely opaque to electromagnetic radiation at 30 GHz.

research product