0000000000170495
AUTHOR
José Luis Olcoz
P0973 : Quercetin ameliorates MCD-induced non-alcoholic fatty liver disease in mice by modulating inflammatory, oxidative/nitrosative stress and lipid metabolism-related gene deregulation via the PI3K/AKT pathway
Functional Interactions between Gut Microbiota Transplantation, Quercetin, and High-Fat Diet Determine Non-Alcoholic Fatty Liver Disease Development in Germ-Free Mice.
Scope Modulation of intestinal microbiota has emerged as a new therapeutic approach for non-alcoholic fatty liver disease (NAFLD). Herein, it is addressed whether gut microbiota modulation by quercetin and intestinal microbiota transplantation can influence NAFLD development. Methods and results Gut microbiota donor mice are selected according to their response to high-fat diet (HFD) and quercetin in terms of obesity and NAFLD-related biomarkers. Germ-free recipients displayed metabolic phenotypic differences derived from interactions between microbiota transplanted, diets, and quercetin. Based on the evaluation of hallmark characteristics of NAFLD, it is found that gut microbiota transplan…
Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease
Scope Flavonoids and related compounds seem to have favorable effects on nonalcoholic fatty liver disease (NAFLD) progression, although the exact mechanisms implicated are poorly understood. In this study, we aimed to investigate the effect of the flanovol quercetin on gene expression deregulation involved in the development of NAFLD, as well as the possible implication of phosphatidylinositol 3-kinase (PI3K)/AKT pathway modulation. Methods and results We used an in vivo model based on methionine- and choline-deficient (MCD) diet-fed mice and an in vitro model consisting of Huh7 cells incubated with MCD medium. MCD-fed mice showed classical pathophysiological characteristics of nonalcoholic…
Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation
Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrom…