Brownian dynamics of grafted polymer chains: time dependent properties
Results of computer simulations of polymer layers consisting of chains grafted by one end on an unpenetrable plane are presented. Characteristics of translational and rotational motion of different chain segments and correlation functions of chain radii were calculated both for single layers at different grafting densities s and for two interacting layers at different distances D between parallel grafting planes. Two values of grafting density were used in the latter case. The behavior of different correlation times as function of s and D and the interplay between the interpenetration of the brushes and rotational and translational motion are discussed. Both relaxation functions and mean sq…
Stochastic dynamics of polymer brushes under shear deformation
The dynamical properties of polymer brushes under shear deformation have been studied by computer simulation. Both the local and the global dynamic properties at various shear rates have been calculated. The distribution of orientational and translational mobilities of the different monomers along the chain have been obtained. It was shown that the local mobility of the brushes changes very slowly with increasing of shear rates up to the largest rates. Increase in grafting density leads to an increasingly step like dependence of the correlation times as a function of shear rate.
Brownian dynamics simulation of grafted polymer brushes
We present results of computer simulations by the method of Brownian dynamics of polymeric brushes attached to impenetrable planes. For testing both model and method we have used one polymer brush attached to a repulsive plane and compare some results with Monte Carlo results of Lai and Binder on the bond fluctuation model. We have also studied two polymeric brushes attached to two parallel planes at different distances between planes, and investigate the interplay between the interpenetration of the brushes and the configurational properties of the grafted chains.
Stochastic dynamics simulation of grafted polymer brushes under shear deformation
We present results of computer simulations of polymer brushes (layers of polymer chains attached at one end onto an impermeable planar surface) under shear deformation at constant shear rate. As the first stage of calculations the behavior of a single brush was studied. The monomer density profile, the distribution of the chain ends, the positions and orientations of different monomers along the chain were calculated. Dimensions of the polymer chains as functions of the shear rate were obtained for different grafting densities. An increase in the brush thickness over the grafting plane with an increase in the shear rate as predicted by the theory of Barrat was observed. However, the magnitu…