0000000000172646

AUTHOR

Arjumand Ather

showing 5 related works from this author

TOMOCOMD-CARDD descriptors-based virtual screening of tyrosinase inhibitors: evaluation of different classification model combinations using bond-bas…

2006

Abstract A new set of bond-level molecular descriptors (bond-based linear indices) are used here in QSAR (quantitative structure–activity relationship) studies of tyrosinase inhibitors, for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones. A database of 246 compounds was collected for this study; all organic chemicals were reported as tyrosinase inhibitors; they had great structural diversity. This dataset can be considered as a helpful tool, not only for theoretical chemists but also for other researchers in this area. The set used as inactive has 412 drugs with other clinical uses. Twelve LDA-based QSAR models were obtained, the first six us…

Models MolecularQuantitative structure–activity relationshipMolecular modelStereochemistryTyrosinaseClinical BiochemistryPharmaceutical ScienceQuantitative Structure-Activity RelationshipBiochemistryModels BiologicalChemometricsMolecular descriptorDrug DiscoveryComputer SimulationMolecular BiologyVirtual screeningMolecular StructureChemistryMonophenol MonooxygenaseOrganic ChemistryDiscriminant AnalysisLinear discriminant analysisModels ChemicalTopological indexMolecular MedicineBiological systemAgaricalesPeptidesAlgorithmsBioorganicmedicinal chemistry
researchProduct

Prediction of tyrosinase inhibition activity using atom-based bilinear indices.

2007

A set of novel atom-based molecular fingerprints is proposed based on a bilinear map similar to that defined in linear algebra. These molecular descriptors (MDs) are proposed as a new means of molecular parametrization easily calculated from 2D molecular information. The nonstochastic and stochastic molecular indices match molecular structure provided by molecular topology by using the kth nonstochastic and stochastic graph-theoretical electronic-density matrices, M(k) and S(k), respectively. Thus, the kth nonstochastic and stochastic bilinear indices are calculated using M(k) and S(k) as matrix operators of bilinear transformations. Chemical information is coded by using different pair com…

PharmacologyMelaninsQuantitative structure–activity relationshipStochastic ProcessesSeries (mathematics)Molecular StructureChemistryMonophenol MonooxygenaseOrganic ChemistryBilinear interpolationLinear discriminant analysisBiochemistryStructure-Activity RelationshipDiscriminantModels ChemicalComputational chemistryMolecular descriptorDrug DiscoveryLinear algebraMolecular MedicineComputer SimulationGeneral Pharmacology Toxicology and PharmaceuticsBilinear mapEnzyme InhibitorsBiological systemChemMedChem
researchProduct

New tyrosinase inhibitors selected by atomic linear indices-based classification models.

2005

In the present report, the use of the atom-based linear indices for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones is presented. In this sense, discriminant models were applied and globally good classifications of 93.51% and 92.46% were observed for non-stochastic and stochastic linear indices best models, respectively, in the training set. The external prediction sets had accuracies of 91.67% and 89.44%. In addition, these fitted models were used in the screening of new cycloartane compounds isolated from herbal plants. A good behavior is shown between the theoretical and experimental results. These results provide a tool that can be used i…

Quantitative structure–activity relationshipMolecular modelStereochemistryTyrosinaseClinical BiochemistryMolecular ConformationPharmaceutical ScienceQuantitative Structure-Activity RelationshipBiochemistrySensitivity and SpecificityChemometricsDrug DiscoveryComputer SimulationEnzyme InhibitorsMolecular BiologyTraining setChemistryMonophenol MonooxygenaseOrganic ChemistryLinear discriminant analysisTriterpenesDiscriminantModels ChemicalTopological indexMolecular MedicineBiological systemBioorganicmedicinal chemistry letters
researchProduct

Atom-Based 2D Quadratic Indices in Drug Discovery of Novel Tyrosinase Inhibitors: Results ofIn Silico Studies Supported by Experimental Results

2007

Herein we present results of QSAR studies of tyrosinase inhibitors employing one of the atom-based TOMOCOMD-CARDD (acronym of TOpological MOlecular COMputer Design-Computer Aided “Rational” Drug Design) descriptors, molecular quadratic indices, and Linear Discriminant Analysis (LDA) as pattern recognition method. In this way, a database of 246 organic chemicals, reported as tyrosinase inhibitors having great structural variability, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. In total, 12 LDA-based QSAR models were obtained, the first six with the non-stochastic total and local quadratic indices and the six rema…

Quantitative structure–activity relationshipVirtual screeningDrug discoveryChemistryIn silicoTyrosinaseOrganic ChemistryComputational biologyMatthews correlation coefficientLinear discriminant analysisCombinatorial chemistryComputer Science ApplicationsMolecular descriptorDrug DiscoveryQSAR & Combinatorial Science
researchProduct

Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays

2006

QSAR (quantitative structure-activity relationship) studies of tyrosinase inhibitors employing Dragon descriptors and linear discriminant analysis (LDA) are presented here. A data set of 653 compounds, 245 with tyrosinase inhibitory activity and 408 having other clinical uses were used. The active data set was processed by k-means cluster analysis in order to design training and prediction series. Seven LDA-based QSAR models were obtained. The discriminant functions applied showed a globally good classification of 99.79% for the best model Class=-96.067+1.988 x 10(2)X0Av +9 1.907 BIC3 + 6.853 CIC1 in the training set. External validation processes to assess the robustness and predictive pow…

Quantitative structure–activity relationshipDatabases FactualStereochemistryTyrosinaseQuantitative Structure-Activity RelationshipComputational biologyLigandsChemometricschemistry.chemical_compoundPiperidinesDrug DiscoveryComputer SimulationPharmacologyVirtual screeningbiologyChemistryOrganic ChemistryIn vitro toxicologyComputational BiologyDiscriminant AnalysisReproducibility of ResultsGeneral MedicineLinear discriminant analysisEnzyme inhibitorDrug Designbiology.proteinPeptidesKojic acidSoftwareEuropean Journal of Medicinal Chemistry
researchProduct