0000000000173969

AUTHOR

Hai-hui Zhao

showing 2 related works from this author

In-flight performance of the DAMPE silicon tracker

2018

Abstract DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector , successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy . DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon–Tungsten tracKer–converter (STK), a BGO calorimeter and a neutron detector . The STK is composed of six double layers of single-sided silicon mi…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGamma rayDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energyOptics0103 physical sciencesDark matterNeutron detection010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysInstrumentationNuclear and High Energy PhysicAstroparticle physicsPhysicsCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorGamma raysGamma rayInstrumentation and Detectors (physics.ins-det)Cosmic raySpaceborne experimentSilicon trackerHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsbusinessCosmic rays; Dark matter; Gamma rays; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; Instrumentation
researchProduct

Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data

2017

Abstract The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon–tungsten tracker–converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron–positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m 2 . Silicon planes are interleaved with three layers of tungsten plates, resulting in about o…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonSiliconProtonPhysics::Instrumentation and DetectorsAlignment; Cosmic-ray detectors; Gamma-ray telescopes; Silicon-strip detectors; Nuclear and High Energy Physics; InstrumentationGamma-ray telescopesAstrophysics::High Energy Astrophysical PhenomenaCosmic-ray detectorsFOS: Physical scienceschemistry.chemical_elementElectron01 natural sciencesSilicon-strip detectorRadiation lengthParticle detectorOptics0103 physical sciences010303 astronomy & astrophysicsInstrumentationImage resolutionNuclear and High Energy PhysicAlignmentPhysicsRange (particle radiation)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)Cosmic-ray detectorSilicon-strip detectorschemistryGamma-ray telescopeHigh Energy Physics::ExperimentbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct