0000000000174500

AUTHOR

Fabien Bretenaker

0000-0002-6457-3372

showing 2 related works from this author

Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon

2019

International audience; We propose a hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be less than 1 pT/ √ Hz. Unlike usual NV center infrared magnetometry, this method would not require an external f…

Materials scienceAbsorption spectroscopyMagnetometerInfraredPhysics::Optics02 engineering and technologyengineering.material01 natural scienceslaw.invention010309 opticsOptics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesPhysics::Atomic PhysicsAbsorption (electromagnetic radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFar-infrared laserDiamond021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and Optics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetismengineering[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessFabry–Pérot interferometer
researchProduct

Infrared laser magnetometry with a NV doped diamond intracavity etalon

2018

We propose an hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be around $250~\mathrm{fT/\sqrt{Hz}}$. Unlike usual NV center infrared magnetometry, this method would not require an external frequency …

Quantum PhysicsFOS: Physical sciencesPhysics::OpticsPhysics::Atomic PhysicsQuantum Physics (quant-ph)Optics (physics.optics)Physics - Optics
researchProduct