0000000000174795

AUTHOR

Nicola D'ambrosio

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

research product

First muography of Stromboli volcano

AbstractMuography consists in observing the differential absorption of muons – elementary particles produced through cosmic-ray interactions in the Earth atmosphere – going through the volcano and can attain a spatial resolution of tens of meters. We present here the first experiment of nuclear emulsion muography at the Stromboli volcano. Muons have been recorded during a period of five months by a detector of 0.96 m2 area. The emulsion films were prepared at the Gran Sasso underground laboratory and were analyzed at Napoli, Salerno and Tokyo scanning laboratories. Our results highlight a significant low-density zone at the summit of the volcano with density contrast of 30–40% with respect …

research product

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

research product

A design for an electromagnetic filter for precision energy measurements at the tritium endpoint

We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptio…

research product

The experimental facility for the Search for Hidden Particles at the CERN SPS

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

research product