0000000000174904
AUTHOR
D. Domenici
The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
Observation of the rare η→e+e−e+e− decay with the KLOE experiment
Abstract We report the first observation of the rare η → e + e − e + e − ( γ ) decay based on 1.7 fb − 1 collected by the KLOE experiment at the DAΦNE ϕ-factory. The selection of the e + e − e + e − final state is fully inclusive of radiation. We have identified 362 ± 29 events resulting in a branching ratio of ( 2.4 ± 0.2 stat + bckg ± 0.1 syst ) × 10 − 5 .
Physics with the KLOE-2 experiment at the upgraded DAFNE
Investigation at a $\phi$--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta$^\prime$ mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We…
Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…
Limit on the production of a light vector gauge boson in $\phi $ mesondecays with the KLOE detector
We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAPHNE. This boson, called U, has been searched for in the decay phi --> eta U, U --> e+ e-, analyzing the decay eta --> pi0 pi0 pi0 in a data sample of 1.7 fb-1. No structures are observed in the e+e- invariant mass distribution over the background. This search is combined with a previous result obtained from the decay eta --> pi+ pi- pi0, increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of alpha'/alpha < 1.7x10^-5 for 30<M_U<400 MeV and alpha'/alpha < 8x10^-6 for the sub-region 50<M_U<210 MeV. This…
The experimental facility for the Search for Hidden Particles at the CERN SPS
The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…
A new limit on the CP violating decay KS→3π0 with the KLOE experiment
We have carried out a new direct search for the CP violating decay K-S -> 3 pi(0) with 1.7 fb(-1) of e(+)e(-) collisions collected by the KLOE detector at the Phi-factory DA Phi NE. We have searched for this decay in a sample of about 5.9 x 10(8) KSKL events tagging the K-S by means of the K-L interaction in the calorimeter and requiring six prompt photons. With respect to our previous search, the analysis has been improved by increasing of a factor four the tagged sample and by a more effective background rejection of fake K-S tags and spurious clusters. We find no candidates in data and simulated background samples, while we expect 0.12 standard model events. Normalizing to the number of …