0000000000175237
AUTHOR
Jun Cao
Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C
ABSTRACT A field-collected colony of the diamondback moth, Plutella xylostella , had 31-fold resistance to Cry1C protoxin of Bacillus thuringiensis . After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous…
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy…
Calibration strategy of the JUNO experiment
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Measurement ofνμandν¯μinduced neutral current singleπ0production cross sections on mineral oil atEν∼O(1 GeV)
MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.40{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.14{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 664 MeV for {nu}{sub {mu}} and {bar {nu}…
Measurement ofνμ-induced charged-current neutral pion production cross sections on mineral oil atEν∈0.5–2.0 GeV
The authors would like to acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation in the construction, operation, and data analysis of the Mini Booster Neutrino Experiment.
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4
Dual baseline search for muon neutrino disappearance at0.5 eV2<Δm2<40 eV2
The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δ'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2
Radioactivity control strategy for the JUNO detector
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses
The sidereal time dependence of MiniBooNE ν[subscript e] and ν[over-bar][subscript e] appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov–Smirnov (K–S) test shows both the ν[subscript e] and ν[over-bar][subscript e] appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the ν[subscript e] appearance data prefer a sidereal time-independent solution, and the ν[over-bar][subscript e] appearance data slightly prefer a sidereal…
Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE
The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.
JUNO sensitivity to low energy atmospheric neutrino spectra
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…
Neutrino flux prediction at MiniBooNE
The booster neutrino experiment (MiniBooNE) searches for nu(mu)->nu(e) oscillations using the O(1 GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the…
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam
The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are obse…