0000000000175239

AUTHOR

Jian-zhou Zhao

0000-0001-9136-2442

showing 2 related works from this author

Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C

2000

ABSTRACT A field-collected colony of the diamondback moth, Plutella xylostella , had 31-fold resistance to Cry1C protoxin of Bacillus thuringiensis . After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous…

Brush borderBacterial ToxinsBrassicaGenetically modified cropsBrassicaMothsApplied Microbiology and BiotechnologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsBinding sitePest Control BiologicalDiamondback mothEcologybiologyStrain (chemistry)Bacillus thuringiensis ToxinsMicrovilliParasporal bodyfungibiology.organism_classificationPlants Genetically ModifiedMolecular biologyEndotoxinsFood ScienceBiotechnology
researchProduct

Mechanism of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Greenhouse Population of the Cabbage Looper, Trichoplusia ni

2007

ABSTRACT The cabbage looper, Trichoplusia ni , is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of…

InsecticidesBacterial ToxinsPopulationBacillus thuringiensisDrug ResistanceBrassicaInsect ControlApplied Microbiology and BiotechnologyMicrobiologyHemolysin ProteinsBacterial ProteinsCabbage looperBacillus thuringiensisHemolymphBotanyInvertebrate MicrobiologyTrichoplusiaAnimalseducationeducation.field_of_studyBacillus thuringiensis ToxinsEcologybiologyStrain (chemistry)fungifood and beveragesMidgutbiology.organism_classificationEndotoxinsLepidopteraCry1AcFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct