0000000000177802

AUTHOR

Juliette Mammei

showing 6 related works from this author

Accurate Determination of the Neutron Skin Thickness of Pb208 through Parity-Violation in Electron Scattering

2021

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616  GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071  fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo)  fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo)  fm^{-3}. The measurement accurately co…

Elastic scatteringPhysicsEquation of state (cosmology)media_common.quotation_subjectForm factor (quantum field theory)General Physics and Astronomy01 natural sciencesAsymmetry0103 physical sciencesSaturation (graph theory)NeutronAtomic physics010306 general physicsElectron scatteringEnergy (signal processing)media_commonPhysical Review Letters
researchProduct

Rosenbluth Separation of the π^{0} Electroproduction Cross Section.

2016

We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. The Rosenbluth technique was used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component, and thus is far from the asymptotic limit predicted by perturbative Quantum Chromodynamics. An indication of a non-zero longitudinal contribution is provided by the interference term $\sigma_{LT}$ also measured. Results are compared with several models based on the leading twist approach of G…

Particle physicslongitudinalinterferenceGeneral Physics and Astronomyparton: distribution functionPartonhard exclusive electroproduction; mesons[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicspi: distribution amplitudegeneralized parton distribution: transversityPiondeep inelastic scattering0103 physical scienceshard exclusive electroproduction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentNuclear ExperimentmesonsQuantum chromodynamicsPhysics010308 nuclear & particles physicsscattering amplitudemomentum transferSigmanucleon: generalized parton distributionScattering amplitudetransverseDistribution (mathematics)Amplitudepi0: electroproductiontwistHigh Energy Physics::ExperimentNucleonchannel cross section: measuredJefferson Labexperimental resultsPhysical review letters
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

2012

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

Elastic scatteringPhysics010308 nuclear & particles physicsScatteringmedia_common.quotation_subjectFOS: Physical sciencesGeneral Physics and AstronomyElastic electronchemistry.chemical_elementElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryAmplitudechemistryExcited state0103 physical sciencesNuclear Experiment (nucl-ex)Atomic physics010306 general physicsNuclear ExperimentNuclear ExperimentHeliummedia_common
researchProduct

Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasielastic Electron-Deuteron Scattering

2011

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scatt…

Nuclear TheoryNuclear TheoryGeneral Physics and Astronomyaxial-vector currentFOS: Physical sciencesInelastic scatteringMott scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]strange quark01 natural sciencesNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)parity-violating asymmetries; axial-vector current; strange quark; charge and magnetic nucleon form factors0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentElastic scatteringPhysicsQuasielastic scattering010308 nuclear & particles physicsScatteringcharge and magnetic nucleon form factorsparity-violating asymmetriesSmall-angle neutron scatteringNATURAL SCIENCES. Physics.PRIRODNE ZNANOSTI. Fizika.High Energy Physics - PhenomenologyQuasielastic neutron scatteringPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentScattering theoryAtomic physics
researchProduct

Deeply virtual compton scattering off the neutron.

2007

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

QuarkPhysicsParticle physicsPhoton010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyNuclear TheoryCompton scatteringFOS: Physical sciencesGeneral Physics and AstronomyVirtual particleParton[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsIsospin0103 physical sciences25.30.-c 13.60.Fz 13.85.Hd 14.20.DhHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear ExperimentPhysical review letters
researchProduct