0000000000178494

AUTHOR

A. Empl

showing 5 related works from this author

Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region

2009

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

Physics010308 nuclear & particles physicsScatteringNuclear TheoryGeneral Physics and AstronomyScintillator7. Clean energy01 natural sciencesNuclear physicsDipoleDeuterium0103 physical sciencesMagnetic form factorNeutron detectionHigh Energy Physics::ExperimentNeutronNuclear Experiment010306 general physicsElectron scatteringPhysical Review Letters
researchProduct

A test of electric charge conservation with Borexino

2015

Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio-purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single mono-energetic photon was obtained. This new bound, tau > 6.6 10**28 yr at 90 % C.L., is two orders of magnitude better than the previous limit.

Particle physicsPhysics - Instrumentation and DetectorsOrders of magnitude (temperature)Physics::Instrumentation and DetectorsGeneral Physics and AstronomyFOS: Physical sciencesElectronScintillatorElectric chargeHigh Energy Physics - ExperimentNuclear physicsPhysics and Astronomy (all)High Energy Physics - Experiment (hep-ex)ddc:550Nuclear ExperimentBorexinoComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]Liquid scintillation countingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)High Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

2005

Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma + p --> p pi+ pi- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 GeV and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these…

Particle physicsPhotonProtonGeneral Physics and AstronomyFOS: Physical sciences13.60.-r 13.60.Le 13.88.+e[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciencesPhenomenological model[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsBremsstrahlungHelicity3. Good healthPair productionNucleon
researchProduct

Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

2014

The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as we…

Nuclear reactionPhysics - Instrumentation and DetectorsProtonneutrino: solarPhysics::Instrumentation and Detectors01 natural sciences7. Clean energynuclear reactionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)PositronstarPrimary (astronomy)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]BorexinoPhysicsSPECTROSCOPYInstrumentation and Detectors (physics.ins-det)SOLAR NEUTRINOSAstrophysics - Solar and Stellar AstrophysicsBorexinoNeutrinomodel: solardeuteronGRAN SASSOParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]talk: Conca Specchiulla 2014/09/07[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationDETECTORSolar and Stellar Astrophysics (astro-ph.SR)neutrino: modelp p: fusion010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDeuterium13. Climate actionspectralHigh Energy Physics::Experimentneutrino: oscillationexperimental results
researchProduct

Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy

2014

Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007–2010), Borexino first detected and then precisely measured the flux of the Be 7 solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle …

Nuclear and High Energy PhysicsCNO cyclePhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsSolar neutrinoFOS: Physical sciences7. Clean energy01 natural sciencesParticle identificationHigh Energy Physics - ExperimentPACS numbers: 13.35.Hb 14.60.St 26.65.+t 95.55.Vj 29.40.McNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences010306 general physicsNeutrino oscillationBorexinoComputingMilieux_MISCELLANEOUSNuclear and High Energy PhysicPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsFísicaInstrumentation and Detectors (physics.ins-det)Solar neutrino problemNeutrino detectorHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct