0000000000178709
AUTHOR
Yaile Caballero
<strong>Predicting Proteasome Inhibition using Atomic Weighted Vector and Machine Learning</strong>
Ubiquitin/Proteasome System (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. Through the concerted actions of a series of enzymes, proteins are marked for proteasomal degradation by being linked to the polypeptide co-factor, ubiquitin. The UPS participates in a wide array of biological functions such as antigen presentation, regulation of gene transcription and the cell cycle, and activation of NF-κB. Some researchers have applied QSAR method and machine learning in the study of proteasome inhibition (EC50(µmol/L)), such as: the analysis of proteasome inhibition prediction, in the prediction of multi-target inhibitors of UPP and in the prediction of p…
State of the Art Review and Report of New Tool for Drug Discovery
BACKGROUND There are a great number of tools that can be used in QSAR/QSPR studies; they are implemented in several programs that are reviewed in this report. The usefulness of new tools can be proved through comparison, with previously published approaches. In order to perform the comparison, the most usual is the use of several benchmark datasets such as DRAGON and Sutherland's datasets. METHODS Here, an exploratory study of Atomic Weighted Vectors (AWVs), a new tool useful for drug discovery using different datasets, is presented. In order to evaluate the performance of the new tool, several statistics and QSAR/QSPR experiments are performed. Variability analyses are used to quantify the…
<strong>New tool useful for drug discovery validated through benchmark datasets</strong>
Atomic Weighted Vectors (AWVs) are vectors that contain the codified information of molecular structures, which can apply to a set of Aggregation Operators (AOs) to calculate total and local molecular descriptors (MDs). This article presents an exploratory study of a new tool useful for drug discovery using different datasets, such as DRAGON and Sutherland’s datasets, as well as their comparison with other well-known approaches. In order to evaluate the performance of the tool, several statistics and QSAR/QSPR experiments were performed. Variability analyses are used to quantify the information content of the AWVs obtained from the tool, by the way of an information theory-based algorithm. …