0000000000178779
AUTHOR
Claude D’uston
Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills
Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after…
The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by e…
The Spirit Rover's Athena science investigation at Gusev Crater, Mars.
The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.
Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple
The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedfor…
The miniaturised Mössbauer spectrometer MIMOS IIA: Increased sensitivity and new capability for elemental analysis
The Miniaturised Mossbauer Spectrometers MIMOS II on board the two Mars Exploration Rovers (MER) have now been collecting valuable scientific data for more than five years. Mossbauer Spectrometers are part of two future missions: Phobos Grunt (Russian Space Agency) and a joint ESA—NASA Rover in 2018. The new advanced MIMOS IIA instrument described in this paper uses Silicon Drift Detectors (SDD) allowing also X-ray fluorescence chemical analysis (XRF) simultaneously to Mossbauer acquisitions. This paper highlights the features and technological improvements of the new spectrometer MIMOS IIA.
APXS and MIMOS IIA: Planetary and terrestrial applications
Both Alpha Particle X-ray Spectrometer (APXS) and the Miniaturized Moessbauer Spectrometer (MIMOS II) have shown their performances in space missions and terrestrial applications. Taking advantage of the challenges of space missions both instruments have become very powerful tools, even small in mass and dimensions.
Bounce Rock-A shergottite-like basalt encountered at Meridiani Planum, Mars
Additional co-authors: Thanasis ECONOMOU, Steven P. GOREVAN, Brian C. HAHN, Gostar KLINGELHOFER, Timothy J. McCOY, Harry Y. McSWEEN Jr, Douglas W. MING, Richard V. MORRIS, Daniel S. RODIONOV, Steven W. SQUYRES, Heinrich WANKE, Shawn P. WRIGHT, Michael B. WYATT, Albert S. YEN