0000000000178796

AUTHOR

Lutz Richter

showing 8 related works from this author

Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills

2006

Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after…

Atmospheric ScienceOutcropGeochemistrySoil ScienceAquatic ScienceOceanographyImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)EjectaDust devilGeomorphologyEarth-Surface ProcessesWater Science and TechnologyBasaltgeographygeography.geographical_feature_categoryEcologyPaleontologyForestryVolcanic rockGeophysicsSpace and Planetary ScienceClastic rockGeologyVolcanic ashJournal of Geophysical Research: Planets
researchProduct

The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars

2004

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by e…

Meridiani PlanumGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentAtmosphereSilicatesGeochemistryMarsWaterMineralogyWindMars Exploration Programengineering.materialFerric CompoundsDiagenesisImpact craterConcretionengineeringSiliciclasticSedimentary rockComposition of MarsSpacecraftEvolution PlanetaryGeologyScience
researchProduct

The Spirit Rover's Athena science investigation at Gusev Crater, Mars.

2004

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.

BasaltgeographyGeologic SedimentsGeological PhenomenaMineralsMultidisciplinarygeography.geographical_feature_categoryExtraterrestrial EnvironmentLithologyAtmosphereMarsWaterGeologyMars Exploration ProgramWindGeologic SedimentsAstrobiologyVolcanic rockIgneous rockMagneticsImpact craterComposition of MarsGeologyScience (New York, N.Y.)
researchProduct

Identification of Morphological Biosignatures in Martian Analogue Field Specimens Using In Situ Planetary Instrumentation

2008

International audience; We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics ( sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life ( fossilized microbial filaments) and of extant life (crypto-chasmoendolit…

Meridiani PlanumIn situGeologic Sediments010504 meteorology & atmospheric sciencesMOSSBAUER-SPECTROSCOPYInstrumentationOrigin of LifeAntarctic RegionsMarsGUSEV CRATERExploration of MarsCalcium Sulfate01 natural sciencesCRYPTOENDOLITHIC LICHENSCalcium CarbonateAstrobiologyRAMAN-SPECTROSCOPIC DETECTIONGermanyExobiology0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesRemote sensingMartianMineralsPlanetary surfaceSpectrometerMERIDIANI-PLANUMWESTERN-AUSTRALIAMars Exploration ProgramAgricultural and Biological Sciences (miscellaneous)YELLOWSTONE-NATIONAL-PARK13. Climate actionSpace and Planetary ScienceMARS EXPLORATIONAmericasANTARCTIC HABITATSIron CompoundsGeologyHAUGHTON IMPACT STRUCTUREAstrobiology
researchProduct

Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site.

2004

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.

Meridiani PlanumRover Landing SiteGeologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentOutcropSilicatesSpectrum AnalysisGeochemistryMineralogyMarsWaterHematiteFerric CompoundsImpact craterClastic rockvisual_artvisual_art.visual_art_mediumAeolian processesSedimentary rockMeridiani PlanumSpacecraftGraded beddingGeologyScience (New York, N.Y.)
researchProduct

Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple

2006

The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedfor…

Meridiani PlanumAtmospheric ScienceEarth scienceGeochemistrySoil ScienceAquatic Scienceengineering.materialOceanographyGeochemistry and PetrologyConcretionStratigraphic sectionEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and Technologygeographygeography.geographical_feature_categoryEcologyBedrockPaleontologyForestryMars Exploration ProgramGeophysicsSpace and Planetary ScienceengineeringAeolian processesSiliciclasticSedimentary rockGeologyJournal of Geophysical Research: Planets
researchProduct

An integrated view of the chemistry and mineralogy of martian soils

2005

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the…

Meridiani PlanumMultidisciplinaryOlivineSoil testMars Exploration RoverMineralogyWeatheringMartian soilengineering.materialmartian soilRocknestSoil waterengineeringComposition of Mars
researchProduct

Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars

2007

During its exploration of the Columbia Hills, the Mars Exploration Rover ‘‘Spirit’’ encountered several similar samples that are distinctly different from Martian meteorites and known Gusev crater soils, rocks, and sediments. Occurring in a variety of contexts and locations, these ‘‘Independence class’’ samples are rough-textured, iron-poor (equivalent FeO 4 wt%), have high Al/Si ratios, and often contain unexpectedly high concentrations of one or more minor or trace elements (including Cr, Ni, Cu, Sr, and Y). Apart from accessory minerals, the major component common to these samples has a compositional profile of major and minor elements whic…

Atmospheric ScienceGeochemistryMarsSoil ScienceMineralogymontmorilloniteAquatic ScienceOceanographychemistry.chemical_compoundImpact craterGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)chemical compositionEarth-Surface ProcessesWater Science and TechnologyGusevMineralEcologyPaleontologyForestryColumbia HillsclayMars Exploration ProgramMars explorationSilicateGeophysicsMontmorilloniteMeteoritechemistrySpace and Planetary ScienceroverGusev CraterSoil horizonClay mineralsGeologyJournal of Geophysical Research
researchProduct