Synthesis and Evaluation of Novel Ring‐Strained Noncanonical Amino Acids for Residue‐Specific Bioorthogonal Reactions in Living Cells
Abstract Bioorthogonal reactions are ideally suited to selectively modify proteins in complex environments, even in vivo. Kinetics and product stability of these reactions are crucial parameters to evaluate their usefulness for specific applications. Strain promoted inverse electron demand Diels–Alder cycloadditions (SPIEDAC) between tetrazines and strained alkenes or alkynes are particularly popular, as they allow ultrafast labeling inside cells. In combination with genetic code expansion (GCE)‐a method that allows to incorporate noncanonical amino acids (ncAAs) site‐specifically into proteins in vivo. These reactions enable residue‐specific fluorophore attachment to proteins in living mam…