0000000000181046

AUTHOR

José R. B. Oliveira

showing 2 related works from this author

Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

2019

Abstract The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ). In this view measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections are performed with high-accuracy. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β-β- decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challe…

Historyexperimental methodsheavy ion: scatteringQC1-999heavy ion: charge exchange[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikka7. Clean energy01 natural sciencesEducationNuclear physicsdouble-beta decay: (0neutrino)Double beta decay0103 physical sciencesneutrino: mass010306 general physicsnucleus: semileptonic decayPhysics010308 nuclear & particles physicsPhysicsparticle: MajoranaNuclear structurecross section: measuredSpecial classmagnetic spectrometercharge exchangedetector: upgradeneon: nuclideComputer Science Applicationsheavy ion induced double charge exchange reactionsneutrino: MajoranaHeavy ionenergy resolution: highydinfysiikkaCharge exchangeexperimental resultsEPJ Web of Conferences
researchProduct

NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

2017

Neutrinoless double beta decay (0{\nu}\b{eta}\b{eta}) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their own anti-particles. Presently, this physics case is one of the most important research beyond Standard Model and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the \b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. The 0{\nu}\b{eta}\b{eta} decay rate can be expressed as a product of independent factors: the phase-space factors, the nuclear matrix elemen…

Semileptonic decayNuclear reactionPhysicsParticle physicsNuclear structureFOS: Physical sciences01 natural sciences7. Clean energyLepton numberStandard ModelydinreaktiotDouble beta decay0103 physical sciencesGrand Unified TheoryNuclear Physics and astrophysicsHigh Energy Physics::ExperimentNeutrinoNuclear Experiment (nucl-ex)010306 general physicsydinfysiikkaNuclear Experiment010303 astronomy & astrophysicsNuclear Experiment
researchProduct