Relaxation Dynamics of Cr(acac)3 Probed by Ultrafast Infrared Spectroscopy
Ultrafast infrared spectroscopy is used to probe the dynamics of Cr(acac)3 upon ligand field (400 nm) and charge transfer state (345 nm) excitation. At both pump wavelengths, the ground state absorption bands are strongly bleached at zero delay, and new broad transient absorption bands appear red shifted from the bleached bands. Recovery of ground state bleach is dominated by a fast time constant (15 ps), while a small percentage recovers within 760−900 ps. Despite the extensive studies on Cr(acac)3 photophysics, the fast recovery of the ground state as a major channel is reported here for the first time. As a general result, the present communication emphasizes the great value of ultrafast…
Internal Rotation in Propionic Acid: Near-Infrared-Induced Isomerization in Solid Argon
The conformational system of propionic acid (CH3CH2COOH) is studied in solid argon. It is predicted by the ab initio calculations that this molecule has four stable conformers. These four structures are denoted Tt, Tg+/-, Ct, and Cg+/-, and they differ by the arrangement around the C-O and Calpha-C bonds. The ground-state Tt conformer is the only form present at 8 K after deposition of an argon matrix containing propionic acid. For the CH3CH2COOH and CH3CH2COOD isotopologues, narrow-band excitation of the first hydroxyl stretching overtone of the conformational ground state promotes the Calpha-C and C-O internal rotations producing the Tg+/- and Ct conformers, respectively. A subsequent vib…
Vibrational relaxation of matrix-isolated carboxylic acid dimers and monomers.
Femtosecond mid-IR transient absorption spectroscopy was used to probe the vibrational dynamics of formic acid and acetic acid isolated in solid argon following excitation of the fundamental transition of the carbonyl stretching mode. Carboxylic acids form extremely stable H-bonded dimers, hindering the study of the monomeric species at equilibrium conditions. The low-temperature rare-gas matrix isolation technique allows for a unique control over aggregation enabling the study of the monomer vibrational dynamics, as well as the dynamics of two distinct dimer structures (cyclic and open chain). This study provides insight into the role of the methyl rotor and hydrogen bonding in the vibrati…
Synthesis and photophysical properties of hyperbranhced polyfluorenes containing 2,4,6-tris(tiophen-2-yl)-1,3,5-triazine as the core
A series of new hyperbranched polymers containing a 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine core unit and polyfluorene chain arms have been synthesized via Suzuki coupling, and characterized by NMR, IR and GPC. All the polymers exhibit good thermal stability with a high decomposition temperature. By changing the 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine/fluorene ratio the UV-vis absorption and emission spectra can be partially tuned. It has been found that the polymers containing a low ratio of 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine units (P1-P3) have an absorption maximum around 385 nm, localized in the polyfluorene chain, and a shoulder around 425 nm ascribable to a charge transfer stat…
Role of Vibrational Dynamics in Electronic Relaxation of Cr(acac)3
Ultrafast energy relaxation of Cr(acac)3 dissolved in tetrachloroethylene (TCE) is studied by time-resolved infrared (TRIR) spectroscopy by using electronic and vibrational excitation. After electronic excitation at 400 or 345 nm, the ground state recovers in two time scales: 15 ps (major pathway) and 800 ps (minor pathway), corresponding to fast electronic transition to the ground state and intermediate trapping on the long-lived (2)E state followed by intersystem crossing (ISC) to the ground state. The quantum yield for the fast recovery of the ground state depends on the excitation wavelength, being higher for 345 nm. Vibrational cooling (VC) occurs on the electronic excited states with …
Rotational Isomerism in Acetic Acid: The First Experimental Observation of the High-Energy Conformer
The high-energy conformer of acetic acid (cis-AA) is produced in an Ar matrix by vibrational excitation of the OH stretching overtone of the ground conformational state (trans-AA). IR-absorption spectroscopy provides a clear identification of the reaction product. cis-AA converts back to trans-AA in a time scale of minutes at 8 K by tunneling. http://dx.doi.org/10.1021/ja038341a
Ultrafast Electronic and Vibrational Energy Relaxation of Fe(acetylacetonate)3 in Solution
Transient mid-infrared spectroscopy is used to probe the dynamics initiated by excitation of ligand-to-metal (400 nm) and metal-to-ligand (345 nm) charge transfer states of FeIII complexed with acetylacetonate (Fe(acac)3, where acac stands for deprotonated anion of acetylacetone) in solution. Transient spectra in the 1500-1600 cm-1 range show two broad absorptions red-shifted from the bleach of the nu(CO) (approximately 1575 cm-1) and nu(C=C) (approximately 1525 cm-1) ground state absorptions. Bleach recovery kinetics has a time constant of 12-19 ps in chloroform and tetrachloroethylene and it decreases by 30-40% in a 10% mixture of methanol in tetrachloroethylene. The transient absorptions…