0000000000181862

AUTHOR

Janine Splettstoesser

0000-0003-1078-9490

showing 2 related works from this author

Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach

2015

The fluxonium qubit has arisen as one of the most promising candidate devices for implementing quantum information in superconducting devices, since it is both insensitive to charge noise (like flux qubits) and insensitive to flux noise (like charge qubits). Here, we investigate the stability of the quantum information to quasiparticle tunneling through a Josephson junction. Microscopically, this dephasing is due to the dependence of the quasiparticle transmission probability on the qubit state. We argue that on a phenomenological level the dephasing mechanism can be understood as originating from heat currents, which are flowing in the device due to possible effective temperature gradients…

Josephson effectPhysicsFlux qubitCondensed Matter - Mesoscale and Nanoscale PhysicsDephasingGeneral Physics and AstronomyFOS: Physical sciencesQuantum PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect530heat currentNoise (electronics)Physics and Astronomy (all)Computer Science::Emerging TechnologiesfluxoniumQubitQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quasiparticleddc:530quasiparticle tunnelingQuantum informationQuantum tunnelling
researchProduct

Measurement and dephasing of a flux qubit due to heat currents

2013

We study a flux qubit, made of a superconducting loop interrupted by three Josephson junctions, which is subject to a temperature gradient. We show that the heat current induced by the temperature gradient, being sensitive to the superconducting phase differences at the junctions, depends significantly on the state of the qubit. We furthermore investigate the impact of the heat current on the coherence properties of the qubit state. We have found that even small temperature gradients can lead to dephasing times of the order of microseconds for the Delft-qubit design.

SuperconductivityJosephson effectPhysicsFlux qubitQuantum PhysicsHeat currentCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDephasingGeneral Physics and AstronomyFOS: Physical sciencesQuantum PhysicsSettore FIS/03 - Fisica Della MateriaTemperature gradientComputer Science::Emerging TechnologiesSUPERCONDUCTIVITY QUBIT THERMAL CURRENT THERMAL DEPHASINGQubitCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum Physics (quant-ph)Coherence (physics)
researchProduct