0000000000182239
AUTHOR
Helen Stoeckli-evans
Reduction of ferricytochrome c catalyzed by optically active chromium(III) complexes
The reduction rates of horse heart ferricytochrome c by amalgamated zinc or by electrolysis at fixed potential on a mercury pool as the cathode have been measured in a buffered solution at pH 7.5 by absorption spectrophotometry. In both cases, the reaction was strongly accelerated by the presence of the optically active complexes Lambda-[Cr(III)((S,S)-promp)H(2)O](+) (H(2)promp = N,N'-[(pyridine-2,6-diyl)bis(methylene)]-bis[(S)-proline]), Delta-[Cr(III)((R,R)-alamp)H(2)O](+) (H(2)alamp = N,N'-[(pyridine-2,6-diyl)bis(methylene)]-bis[(R)-alanine]) and Lambda-[Cr(III)((S,S)-alamp)(H(2)O)(2)](+). These were shown to undergo reversible one-electron reduction to the corresponding labile chromium(…
Cyano-Bridged Bimetallic Assemblies from Hexacyanometalate, [M(CN)6]3- (M = MnIII and FeIII), and [M(N4-macrocycle)]2+ (M = FeIII, NiII and ZnII) Building Blocks. Syntheses, Multidimensional Structures, and Magnetic Properties
Reactions between [M(N4-macrocycle)]2+ (M = ZnII and NiII; macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)6]3- (M = FeIII and MnIII) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)6]·6H2O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, TN, is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can…
Ferromagnetism and Chirality in Two-Dimensional Cyanide-Bridged Bimetallic Compounds
The combination of hexacyanoferrate(III) anions, [Fe(CN)(6)](3)(-), with nickel(II) complexes derived from the chiral ligand trans-cyclohexane-1,2-diamine (trans-chxn) affords the enantiopure layered compounds [Ni(trans-(1S,2S)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (1) and [Ni(trans-(1R,2R)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (2). These chiral systems behave as ferromagnets (T(c) = 13.8 K) with a relatively high coercive field (H(c) = 0.17 T) at 2 K. They also exhibit an unusual magnetic behavior at low temperatures that has been attributed to the dynamics of the magnetic domains in the ordered phase.
Synthesis, crystal structures and electronic properties of imidazoline nitroxide radicals bearing active groups in electropolymerisation
Thiophene-, phenylthiophene-, and indole-based nitronyl nitroxide (NN) and imino nitroxide (IN) radicals have been synthesised and their electrochemical and magnetic properties have been studied. Cyclic voltammetry measurements show that NN radicals (1–3) exhibit a one-electron quasi-reversible oxidation process that results in the formation of the corresponding nitrosonium cations. This behaviour pushes the oxidation potential of the other redox-active moiety to very high values. The oxidation of the thiophene subunit occurs at 2.35 V, whereas the oxidation of the phenylthiophene and indole moieties takes place at 1.65 and 1.39 V, respectively. Oxidation of IN radicals (4–5) is irreversibl…
Design of chiral magnets: Cyanide-bridged bimetallic assemblies based on cyclohexane-1,2-diamine
Abstract Four magnetic compounds based on chiral ligands trans-(1S,2S)-chxn and trans-(1R,2R)-chxn (chxn: cyclohexane-1,2-diamine), [Ni(trans-(1S,2S)-chxn)2]3[Fe(CN)6]2·2H2O (1), [Ni(trans-(1R,2R)-chxn)2]3[Fe(CN)6]2·2H2O (2), [Cu(trans-(1S,2S)-chxn)2]3[Fe(CN)6]2·4.5H2O (3) and [Cu(trans-(1R,2R)-chxn)2]3[Fe(CN)6]2·4.5H2O (4), are reported. The four compounds are chiral, as confirmed by X-ray analyses and circular dichroism measurements. From the magnetic point of view, 1 and 2 behave as ferromagnets, whereas 3 and 4 show a paramagnetic behavior.
A novel two-dimensional honeycomb-like bimetallic iron(iii)–nickel(ii) cyanide-bridged magnetic material [Ni(cyclam)]3[Fe(CN)6]2·nH2O (cyclam = 1,4,8,11-tetraazacyclodecane)
The 2D honeycomb-like layered iron(iii)–nickel(ii) cyanidebridged complex [Ni(cyclam)]3[Fe(CN)6]2·nH2O exhibits ferromagnetic intralayer and antiferromagnetic interlayer interactions; above 3 K the magnetic properties are typical of a metamagnet with Hc = 5000 G, whereas below 3 K a canted structure is formed, leading to a long range ferromagnetic ordering. Lloret Pastor, Francisco, Francisco.Lloret@uv.es
One-dimensional iron(III) and two-dimensional iron(III)nickel(II) cyanide-bridged ferromagnetic arrays from hexacyanoferrate(III) and [Ni(cyclam)]2+ building blocks: Synthesis, crystal structure and magnetic properties
Abstract The X-ray structures and magnetic properties of a iron(III) linear chain and a honeycomb-like layered iron(III)-nickel(II) cyanide-bridged compound are reported. The former contains alternating iron sites and unexpected ferromagnetic behaviour, justified on the basis of the axial distortion from regular octahedral geometry of one of the iron ions. The latter is metamagnetic with ferromagnetic intralayers and antiferromagnetic interlayers interactions with a Neel temperature, TN= 7.7 K. The field-induced transition from an antiferro- to a ferromagnetic state takes place at Hc= 5000 G. The antiferromagnetic ordered phase exhibits spin-canting and long range ferromagnetic ordering at …
2D and 3D coordination polymers based on 2,2′-bipyrimidine and cyanide bridging ligands incorporating coordinated and guest ammonia molecules. Synthesis, crystal structures, magnetic properties and thermal analysis of {[Ni(CN)4]2[(Ni(NH3)2)2(bpym)]·2H2O}n and {[Cu2(CN)2(bpym)]·NH3}n
The coordination polymers {[Ni(CN)4]2[(Ni(NH3)2)2(bpym)]·2H2O}n1 and {[Cu2(CN)2(bpym)]·NH3}n2 have been prepared from the reactions of M(NO3)2·nH2O [Cu(II), n = 3 and M = Ni(II), n = 6] with NaCN and bpym (2,2′-bipyrimidine) in concentrated aqueous ammonia, respectively. The structure of 1 is made of bipyrimidine bridged centrosymmetric dinuclear [Ni(NH3)2(μ-bpym)Ni(NH3)2] fragments connected by four [Ni(CN)4]2− anions giving rise to a 2D framework. Layers, which adopt a stair-like conformation, are stacked with an ABAB… repeat pattern. Water molecules are located in the interlayer space and are involved in hydrogen bond interactions with the non-bridging cyanide groups of the [Ni(CN)4]2− a…
Iron-Promoted Nucleophilic Additions to Diimine-Type Ligands: A Synthetic and Structural Study
We report here three examples of the reactivity of protic nucleophiles with diimine-type ligands in the presence of Fe(II) salts. In the first case, the iron-promoted alcoholysis reaction of one nitrile group of the ligand 2,3-dicyano-5,6-bis(2-pyridyl)-pyrazine (L1) permitted the isolation of an stable E-imido-ester, [Fe(L1')(2)](CF(3)SO(3))(2) (1), which has been characterized by spectroscopic studies (IR, ES-MS, Mössbauer), elemental analysis, and crystallographically. Compound 1 consists of mononuclear octahedrally coordinated Fe(II) complexes where the Fe(II) ion is in its low-spin state. The iron-mediated nucleophilic attack of water to the asymmetric ligand 2,3-bis(2-pyridyl)pyrido[3…
A Novel One-Dimensional Cyano-Bridged Ni3Fe2 Ferromagnet Constructed from Bimetallic Molecular Squares
Reaction of the complex [Ni(rac-CTH)](2+) (rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with [Fe(CN)(6)](3-) leads to a novel cyano-bridged Ni(3)Fe(2) complex, [[Ni(rac-CTH)](3)[Fe(CN)(6)](2)](4). The structure consists of an alternating arrangement of [Fe(CN)(6)Ni(rac-CTH)](2) squares and trans-planar [Ni(rac-CTH)](2+) units bridged by cyanide groups to give a neutral 1D chain running along the a axis. Magnetic measurements reveal the occurrence of ferromagnetic coupling between Fe(III) and Ni(II) ions and 3D magnetic ordering at 3 K due to interchain interactions. Canting of the moments is inferred from the low value of the magnetization of the saturation bel…
Synthesis and characterization of a new family of bi-, tri-, tetra-, and pentanuclear ferric complexes.
Nine members of a new family of polynuclear ferric complexes have been synthesized and characterized. The reaction of Fe(O(2)CMe)(2) with polydentate Schiff base proligands (H(2)L) derived from salicylidene-2-ethanolamine, followed in some cases by reaction with carboxylic acids, has afforded new complexes of general formulas [Fe(2)(pic)(2)(L)(2)] (where pic(-) is the anion of 2-picolinic acid), [Fe(3)(O(2)CMe)(3)(L)(3)], [Fe(4)(OR)(2)(O(2)CMe)(2)(L)(4)], and [Fe(5)O(OH)(O(2)CR)(4)(L)(4)]. The tri-, tetra-, and pentanuclear complexes all possess unusual structures and novel core topologies. Mössbauer spectroscopy confirms the presence of high-spin ferric centers in the tri- and pentanuclear…
Cyano-bridged structures based on [MnIIN3O2-macrocycle)]2+: a synthetic, structural, and magnetic study.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize …
Three-dimensional bimetallic octacyanidometalates $[M^{IV}{(\mu-CN)_{4}Mn^{II}(H_{2}O)_2}_2 \cdot 4H_{2}O]_{n}$ (M=Nb,Mo,W) : synthesis, single-crystal X-ray diffraction and magnetism
Abstract We report the synthesis, the single-crystal X-ray crystallographic structures and the magnetic properties of three new isostructural cyanido-bridged networks: [M IV {(μ-CN) 4 Mn II (H 2 O) 2 } 2 ·4H 2 O] n [M IV = Nb IV ( 1 ), Mo IV ( 2 ), W IV ( 3 )]. For compound 1 , the magnetic properties reveal a ferrimagnetic phase below 50 K. In contrast, compounds 2 and 3 show a paramagnetic behaviour with no magnetic ordering down to 2 K. The only electronic difference between the two kinds of compounds is the presence of two paired electrons on Mo IV ( 2 ) and W IV ( 3 ) (d 2 electronic configuration, S = 0) with no possible exchange interactions with Mn II ions (d 5 electronic configur…