0000000000183499
AUTHOR
Ilkka Rautiainen
Predicting overweight and obesity in later life from childhood data: A review of predictive modeling approaches
Background: Overweight and obesity are an increasing phenomenon worldwide. Predicting future overweight or obesity early in the childhood reliably could enable a successful intervention by experts. While a lot of research has been done using explanatory modeling methods, capability of machine learning, and predictive modeling, in particular, remain mainly unexplored. In predictive modeling models are validated with previously unseen examples, giving a more accurate estimate of their performance and generalization ability in real-life scenarios. Objective: To find and review existing overweight or obesity research from the perspective of employing childhood data and predictive modeling metho…
Tiedonlouhinnan ja koneoppimisen menetelmät verkkohyökkäysten havaitsemisessa
Tietokoneverkoissa toimivat hyökkääjät yrittävät jatkuvasti ohittaa käytössä olevia turvajärjestelmiä, ja pyrkivät kehittämään uusia tapoja kohteidensa vahingoittamiseen. Näitä hyökkäyksiä voidaan havaita tunkeilijan havaitsemisjärjestelmällä (engl. intrusion detection system eli IDS). Yleisesti käytettyjen väärinkäytöspohjaisten menetelmien lisäksi hyökkäyksiä voidaan havaita anomaliapohjaisilla eli tiedonlouhinnan ja koneoppimisen menetelmillä. Nämä menetelmät kykenevät teoriassa havaitsemaan myös aiemmin tuntemattomat hyökkäykset. Tiedonlouhinnan ja koneoppisen menetelmien hyödyntäminen IDS-järjestelmissä on laajalti tutkittu alue, mutta useat ongelmat ovat vielä vailla ratkaisua. Tässä …
Tekoälyn perusteita ja sovelluksia
Precision exercise medicine: predicting unfavourable status and development in the 20-m shuttle run test performance in adolescence with machine learning
Objectives: To assess the ability to predict individual unfavourable future status and development in the 20m shuttle run test (20MSRT) during adolescence with machine learning (random forest (RF) classifier). Methods: Data from a 2-year observational study (2013‒2015, 12.4±1.3 years, n=633, 50% girls), with 48 baseline characteristics (questionnaires (demographics, physical, psychological, social and lifestyle factors), objective measurements (anthropometrics, fitness characteristics, physical activity, body composition and academic scores)) were used to predict: (Task 1) unfavourable future 20MSRT status (identification of individuals in the lowest 20MSRT tertile after 2 years), and (Task…