0000000000183499

AUTHOR

Ilkka Rautiainen

showing 4 related works from this author

Predicting overweight and obesity in later life from childhood data: A review of predictive modeling approaches

2019

Background: Overweight and obesity are an increasing phenomenon worldwide. Predicting future overweight or obesity early in the childhood reliably could enable a successful intervention by experts. While a lot of research has been done using explanatory modeling methods, capability of machine learning, and predictive modeling, in particular, remain mainly unexplored. In predictive modeling models are validated with previously unseen examples, giving a more accurate estimate of their performance and generalization ability in real-life scenarios. Objective: To find and review existing overweight or obesity research from the perspective of employing childhood data and predictive modeling metho…

Computer Science - Machine LearningStatistics - Machine LearningStatistics - Applications
researchProduct

Tiedonlouhinnan ja koneoppimisen menetelmät verkkohyökkäysten havaitsemisessa

2016

Tietokoneverkoissa toimivat hyökkääjät yrittävät jatkuvasti ohittaa käytössä olevia turvajärjestelmiä, ja pyrkivät kehittämään uusia tapoja kohteidensa vahingoittamiseen. Näitä hyökkäyksiä voidaan havaita tunkeilijan havaitsemisjärjestelmällä (engl. intrusion detection system eli IDS). Yleisesti käytettyjen väärinkäytöspohjaisten menetelmien lisäksi hyökkäyksiä voidaan havaita anomaliapohjaisilla eli tiedonlouhinnan ja koneoppimisen menetelmillä. Nämä menetelmät kykenevät teoriassa havaitsemaan myös aiemmin tuntemattomat hyökkäykset. Tiedonlouhinnan ja koneoppisen menetelmien hyödyntäminen IDS-järjestelmissä on laajalti tutkittu alue, mutta useat ongelmat ovat vielä vailla ratkaisua. Tässä …

klusteritkoneoppiminenIDS-järjestelmättukivektorikoneneuroverkottiedonlouhinta
researchProduct

Tekoälyn perusteita ja sovelluksia

2019

koneoppiminenbig dataneuroverkottekoälytiedonlouhinta
researchProduct

Precision exercise medicine: predicting unfavourable status and development in the 20-m shuttle run test performance in adolescence with machine lear…

2021

Objectives: To assess the ability to predict individual unfavourable future status and development in the 20m shuttle run test (20MSRT) during adolescence with machine learning (random forest (RF) classifier). Methods: Data from a 2-year observational study (2013‒2015, 12.4±1.3 years, n=633, 50% girls), with 48 baseline characteristics (questionnaires (demographics, physical, psychological, social and lifestyle factors), objective measurements (anthropometrics, fitness characteristics, physical activity, body composition and academic scores)) were used to predict: (Task 1) unfavourable future 20MSRT status (identification of individuals in the lowest 20MSRT tertile after 2 years), and (Task…

Medicine (General)fyysinen kuntochildren's health and exerciseR5-920koneoppiminennuoretadolescentphysical fitnessennusteet1506kuntotestitsports & exercise medicineOriginal ResearchBMJ Open Sport — Exercise Medicine
researchProduct