0000000000186123

AUTHOR

T. Davenne

showing 2 related works from this author

High intensity neutrino oscillation facilities in Europe

2013

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]7. Clean energy01 natural sciencesNuclear physicsneutrino0103 physical sciencesEmmaFysiklcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsNeutrino oscillationQCAstroparticle physicsPhysicsLarge Hadron ColliderBeta-Beam010308 nuclear & particles physicsFísicaSurfaces and InterfacesAccelerators and Storage RingsNeutrino detectorPhysical Scienceslcsh:QC770-798Physics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Storage ringLepton
researchProduct

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

2014

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

Physics::Instrumentation and Detectorsfar detectorkaukoputket ja teleskoopit7. Clean energyviolation [CP]CP violation; Neutrino Detectors and Telescopes; Oscillation; Nuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Observatorymass: hierarchy [neutrino]detector [neutrino]QCPhysicsTime projection chamberLarge Hadron ColliderOscillationmagnetization [iron]oscillation [neutrino]High Energy Physics - PhenomenologyCP violationliquid argon [time projection chamber]CP violationNeutrinoParticle physicsNuclear and High Energy PhysicsCERN Lab530 PhysicseducationFOS: Physical sciencesddc:500.2oscillation [flavor]114 Physical sciencesNuclear physicsphase spacenear detectorstatistical analysisiron [calorimeter]Particle Physics - PhenomenologyAstroparticle physicsNeutrino Detectors and Telescopesta114Físicaflavor [neutrino]CP [phase]CERN SPSMODELproposed [observatory]Oscillation13. Climate actionPhase space[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gas [argon]beam [neutrino]High Energy Physics::ExperimentMATTERneutrino detectorsCP violation.
researchProduct