0000000000187196

AUTHOR

Kui Wang

showing 6 related works from this author

Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol–gels to solid 3D silica composite structures

2012

Structural biomaterials are hierarchically organized and biofabricated. Although the structural complexity of most bioskeletons can be traced back from the millimeter-scale to the micrometer- or submicrometer-scale, the biological and/or genetic basis controlling the synthesis of these skeletons and their building blocks remained unknown. There is one distinguished example, the spicules of the siliceous sponges, for which the principle molecules and molecular-biological processes involved in their formation have been elucidated in the last few years. In this review, recent data on the different levels of molecular, biological and structural hierarchies controlling the synthesis of the pictu…

0303 health sciencesSpiculeInorganic polymerSyneresisNanotechnology02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics03 medical and health scienceschemistry.chemical_compoundSponge spiculechemistryPolymerizationChemical engineeringOrthosilicate0210 nano-technologyFunction (biology)030304 developmental biologySclerocyteSoft Matter
researchProduct

Nonenzymatic Transformation of Amorphous CaCO3 into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo H…

2015

Studies indicate that mammalian bone formation is initiated at calcium carbonate bioseeds, a process that is driven enzymatically by carbonic anhydrase (CA). We show that amorphous calcium carbonate (ACC) and bicarbonate (HCO3 (-) ) cause induction of expression of the CA in human osteogenic SaOS-2 cells. The mineral deposits formed on the surface of the cells are rich in C, Ca and P. FTIR analysis revealed that ACC, vaterite, and aragonite, after exposure to phosphate, undergo transformation into calcium phosphate. This exchange was not seen for calcite. The changes to ACC, vaterite, and aragonite depended on the concentration of phosphate. The rate of incorporation of phosphate into ACC, …

Calcium PhosphatesSepiaInorganic chemistrychemistry.chemical_elementCalciumengineering.materialBiochemistryCalcium CarbonateCell LinePhosphateschemistry.chemical_compoundOsteogenesisVateriteAnimalsHumansMolecular BiologyCarbonic AnhydrasesCalciteChemistryAragoniteOrganic ChemistryPhosphateAmorphous calcium carbonateBivalviaBicarbonatesCalcium carbonateDurapatiteGene Expression RegulationengineeringMolecular MedicineCarbonatePeptidesNuclear chemistryChembiochem : a European journal of chemical biology
researchProduct

ChemInform Abstract: Genetic, Biological and Structural Hierarchies During Sponge Spicule Formation: from Soft Sol-Gels to Solid 3D Silica Composite …

2012

Sponge spiculeChemical engineeringChemistryComposite numberGeneral MedicineChemInform
researchProduct

The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl 3 , as an inducer of hydroxyapatite formation in vitro

2015

Inorganic polyphosphate (polyP) is a physiological polymer composed of tens to hundreds of phosphate units linked together via phosphoanhydride bonds. Here we compared the biological activity of polyP (chain length of 40 phosphate units), complexed with Gd(3+) (polyP·Gd), with the one caused by polyP (as calcium salt) and by GdCl3 alone, regarding their potencies to induce hydroxyapatite (HA) formation in SaOS-2 cells in vitro. The three compounds, GdCl3, polyP and polyP·Gd were found to be non-toxic at concentrations up to at least 30μM. Selecting a low, 5μM, concentration it was found that polyP·Gd significantly induced HA formation, as determined by Alizarin Red S staining and by quantit…

0301 basic medicinePolymerschemistry.chemical_elementGadolinium02 engineering and technologyCalciumBiochemistry03 medical and health scienceschemistry.chemical_compoundPolyphosphatesCell Line Tumorotorhinolaryngologic diseasesHumansneoplasmsSaos-2 cellsPharmacologychemistry.chemical_classificationDose-Response Relationship DrugChemistryPolyphosphateBiological activitypathological conditions signs and symptoms021001 nanoscience & nanotechnologyPhosphatedigestive system diseasesIn vitroDurapatitesurgical procedures operative030104 developmental biologyEnzymeBiochemistryAlkaline phosphatase0210 nano-technologyBiochemical Pharmacology
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct