0000000000188376

AUTHOR

J. Simonis

Ab initio limits of atomic nuclei

We predict the limits of existence of atomic nuclei, the proton and neutron drip lines, from the light through medium-mass regions. Starting from a chiral two- and three-nucleon interaction with good saturation properties, we use the valence-space in-medium similarity renormalization group to calculate ground-state and separation energies from helium to iron, nearly 700 isotopes in total. We use the available experimental data to quantify the theoretical uncertainties for our ab initio calculations towards the drip lines. Where the drip lines are known experimentally, our predictions are consistent within the estimated uncertainty. For the neutron-rich sodium to chromium isotopes, we provid…

research product

First glimpse of the $N=82$ shell closure below $Z=50$ from masses of neutron-rich cadmium isotopes and isomers

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}$Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}$Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.

research product

Precision Mass Measurements of Cr58–63 : Nuclear Collectivity Towards the N=40 Island of Inversion

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

research product

Probing chiral interactions up to next-to-next-to-next-to-leading order in medium-mass nuclei

We study ground-state energies and charge radii of closed-shell medium-mass nuclei based on novel chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions, with a focus on exploring the connections between finite nuclei and nuclear matter. To this end, we perform in-medium similarity renormalization group (IM-SRG) calculations based on chiral interactions at next-to-leading order (NLO), N$^2$LO, and N$^3$LO, where the 3N interactions at N$^2$LO and N$^3$LO are fit to the empirical saturation point of nuclear matter and to the triton binding energy. Our results for energies and radii at N$^2$LO and N$^3$LO overlap within uncertainties, and the cutoff variation of the interactions is w…

research product

Shell evolution of $N=40$ isotones towards $^{60}$Ca: First spectroscopy of $^{62}$Ti

7 pags., 4 figs., 1 tab.

research product

First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}\mathrm{Cd}$ offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}\mathrm{Sn}$. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}\mathrm{Cd}$ and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalizat…

research product

Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…

research product

Ground-state electromagnetic moments of calcium isotopes

Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM

research product

Precision Mass Measurement of $^{58-63}$Cr: Nuclear Collectivity towards the $N=40$ Island of Inversion

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

research product

$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation

Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…

research product

Charge radius of the short-lived $^{68}$Ni and correlation with the dipole polarizability

We present the first laser spectroscopic measurement of the neutron-rich nucleus $^{68}$Ni at the \mbox{$N=40$} subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability $\alpha_{\rm D}$ has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus $^{48}$Ca. Three-particle--three-hole correlations in coupled-cluster theory substant…

research product

Unexpectedly large charge radii of neutron-rich calcium isotopes

Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain "magic" numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly-magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known Ca isotopes have been successfully described by nuclear theory, it is still a challenge to predict their charge radii evolution. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theo…

research product

Charge Radius of the Short-Lived Ni68 and Correlation with the Dipole Polarizability

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the descrip…

research product