0000000000188384

AUTHOR

Bruno Scaillet

Experimental and thermodynamic constraints on mineral equilibrium inpantelleritic magmas

Abstract Crystallization experiments on two pantellerites from Pantelleria, Italy, provide new evidence for the relationships between mineral phases in pantelleritic rocks as well as the influence of temperature and redox conditions on mineral assemblages. Experiments were performed at 1 kbar with temperature ranging between 750–900°C, and fluid saturation conditions with XH2O (=H2O/H2O+CO2) between 0 and 1. Redox conditions were fixed at, or slightly below, the FMQ buffer. Results show that at temperature of 900 °C pantelleritic magmas are well above the liquidus regardless their water content; we also observed a decrease in liquidus temperature (800°C) with increasingly reducing condition…

research product

Origin of primitive ultra-calcic arc melts at crustal conditions — Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

International audience; To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O–CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encount…

research product

Phase equilibrium constraints on the production and storage of peralkaline silicic magmas: insights from Kenya and Pantelleria.

The origin of peralkaline silicic rocks is still obscure and stands perhaps as one of the last major unsettled issues in classic igneous petrology. The debate goes back to the end of the 18th century and despite intensive petrological, geochemical and laboratory efforts the consensus has yet to emerge as to which mechanisms produce peralkaline derivatives. Bowen (1937) first proposed that the shift from metaluminous to peralkaline field was due to extensive fractionation of calcic plagioclase. Perhaps the best illustration of such an hypothesis is provided by the Boina rock series in the Ethiopian rift studied by Barberi et al. (1975). However, such an hypothesis still awaits experimental c…

research product

Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy.

International audience; We present experimental phase equilibria carried out on a pantelleritic bulk-rock composition with a peralkalinity index [PI = molar (Na2O + K2O)/Al2O3] = 1*4, which is representative of the most energetic pumice fall eruption of the resurgent post-caldera volcanism on Pantelleria island. For the explored conditions (P = 25-150 MPa; T = 680-800°C; H2Omelt up to 6 wt %; fO2 ≤ NNO, where NNO is nickel-nickel oxide buffer) clinopyroxene is the liquidus phase followed by alkali feldspar and then quartz. The crystallization of amphibole is limited to temperatures below 700°C. Aenigmatite crystallizes near the liquidus for P ≥ 100 MPa. When clinopyroxene is the sole liquid…

research product

Chlorine Partitioning Between a Basaltic Melt and H2O-CO2 Fluids at Mount Etna

Partitioning experiments between a basaltic melt from Mt. Etna and a low-density hydrous fluid or vapor containing H(2)O or H(2)O-CO(2) were performed at 1200-1260 degrees C, at pressures between 1 and 200 MPa, either near the nickel-nickel oxide (NNO) buffer or at two log units above it (NNO + 2), and with different chloride concentrations. Most of the experiments were done at chloride-brine-undersaturated conditions, although at the highest Cl concentrations explored brine saturation might have been reached. The average partition coefficients (D(Cl)(fluid/melt)) over the range of Cl concentrations were derived on a weight basis by plotting the calculated concentrations of Cl in the fluid …

research product

Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna

Erratum to: Bull Volcanol (2017) 79: 36DOI 10.1007/s00445-017-1114-zDuring the steps of corrections, the publisher inadvertently changed the author affiliations so that they were no longer correct. The correct information is given below. The publisher regrets this mistake.; International audience; Volcanic gas emission measurements inform predictions of hazard and atmospheric impacts. For these measurements, Multi-Gas sensors provide low-cost in situ monitoring of gas composition but to date have lacked the ability to detect halogens. Here, two Multi-Gas instruments characterized passive outgassing emissions from Mt. Etna’s (Italy) three summit craters, Voragine (VOR), North-east Crater (NE…

research product

Experimental Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano (Italy)

International audience; The near-liquidus crystallization of a high-K basalt (PST-9 golden pumice, 49·4 wt % SiO2, 1·85 wt % K2O, 7·96 wt % MgO) from the present-day activity of Stromboli (Aeolian Islands, Italy) has been experimentally investigated between 1050 and 1175°C, at pressures from 50 to 400 MPa, for melt H2O concentrations between 1·2 and 5·5 wt % and {Delta}NNO ranging from –0·07 to +2·32. A drop-quench device was systematically used. AuPd alloys were used as containers in most cases, resulting in an average Fe loss of 13% for the 34 charges studied. Major crystallizing phases include clinopyroxene, olivine and plagioclase. Fe–Ti oxide was encountered in a few charges. Clinopyro…

research product

The role of melt composition on aqueous fluid vs. silicate melt partitioning of bromine in magmas

International audience; Volcanogenic halogens, in particular bromine, potentially play an important role in the ozone depletion of the atmosphere. Understanding bromine behaviour in magmas is therefore crucial to properly evaluate the contribution of volcanic eruptions to atmospheric chemistry and their environmental impact. To date, bromine partitioning between silicate melts and the gas phase is very poorly constrained, with the only relevant experimental studies limited to investigation of synthetic melt with silicic compositions. In this study, fluid/melt partitioning experiments were performed using natural silicate glasses with mafic, intermediate and silicic compositions. For each co…

research product

Experimental Constraints on the Deep Magma Feeding System at StromboliVolcano, Italy

International audience; New experiments have been performed on a high-K basalt (PST-9) from Stromboli volcano, Italy, to constrain the physical conditions of golden pumice magmas at their storage level and discuss their petrogenesis. Fluid-present, H2O- and CO2-bearing, near-liquidus experiments were performed at 11508C between 100 and 400MPa and under oxidizing conditions. Glasses were analyzed by Fourier transform IR spectroscopy and their H2O and CO2 concentrations compared with those in glass inclusions.Most glass inclusions cluster near the 200MPa isobar, suggesting entrapment at a depth of ~8 km. Golden pumice magmas have viscosities of 7.9 Pa s and densities of 2.48-2.57 g/cm3. Compo…

research product

The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer – hence preserving mantle conditions – or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai…

research product

Generation of CO2-rich melts during basalt magma ascent and degassing

International audience; To test mechanisms of basaltic ma gma degassing, continuous decompressions of volatile-bearing (2.7-3.8 wt% H2O, 600-1300 ppm CO2) Stromboli melts were performed from 250-200 to 50-25 MPa at 1180-1140°C. Ascent rates were varied from 0.25 to ~ 1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubble-free to bubble-rich, the latter with bubble number densities from 104 to 106/cm3, similar to Stromboli pumices. Vesicularities range from 0 to ~ 20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High vesicularity charges ha…

research product

Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions and on the metaluminous to peralkaline transition in silicic magmas.

Pantelleria Island is the type locality of pantellerite, an iron and alkali-rich rhyolite (P.I=molar Na2O+K2O/Al2O3 >1.05). Peralkaline rhyolites (i.e pantellerite and comendite) and trachytes usually represent the felsic end-members in continental rift systems (e.g., Pantelleria, Tibesti, Ethiopia, Afar, Kenya, Bain and Range, South Greenland) and in oceanic sland settings (Socorro Is., Easter Is., Iceland and Azores). The origin of peralkaline rhyolites in the different tectonic settings is still a matter of debate and three hypotheses have been suggested: (a) crystal fractionation of alkali-basalt in a shallow reservoir to produce a trachyte which subsequently gives rise to a pantelle…

research product