0000000000188469

AUTHOR

Roman Tsaryk

Endoplasmic reticulum‐resident chaperones modulate the inflammatory and angiogenic responses of endothelial cells

SummaryBackground Wound healing depends on a well-balanced regulation of inflammation and angiogenesis. In chronic wounds the healing process is disturbed and inflammation persists. Regulation of wound closure is controlled by transmembrane and extracellular proteins, the folding and maturation of which occur in the endoplasmic reticulum (ER) by ER-resident chaperone machinery. Objectives To study the role of the ER-resident chaperones BiP/Grp78, its cochaperone Mdg1/ERdJ4, and Grp94 in chronic, nonhealing wounds. Methods Immunohistochemical staining of these chaperones in individual human biopsies and investigation of the possible role of BiP and Mdg1 in endothelial cells, focusing on thei…

research product

The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy

Inflammation is an important step in the early phase of tissue regeneration around an implanted metallic orthopaedic device. However, prolonged inflammation, which can be induced by metallic corrosion products, can lead to aseptic loosening and implant failure. Cells in peri-implant tissue as well as metal corrosion can induce reactive oxygen species (ROS) formation, thus contributing to an oxidative microenvironment around an implant. Understanding cellular reactions to implant-induced oxidative stress and inflammatory activation is important to help prevent an adverse response to metallic materials. In an earlier study we have shown that endothelial cells grown on Ti6Al4V alloy are subjec…

research product

Improving cytocompatibility of Co28Cr6Mo by TiO 2 coating: gene expression study in human endothelial cells

Cobalt-based materials are widely used for coronary stents, as well as bone and joint implants. However, their use is associated with high corrosion incidence. Titanium alloys, by contrast, are more biocompatible owing to the formation of a relatively inactive titanium oxide (TiO 2 ) layer on their surface. This study was aimed at improving Co28Cr6Mo alloy cytocompatibility via sol–gel TiO 2 coating to reduce metal corrosion and metal ion release. Owing to their role in inflammation and tissue remodelling around an implant, endothelial cells present a suitable in vitro model for testing the biological response to metallic materials. Primary human endothelial cells seeded on Co28Cr6Mo showe…

research product

The Role of Oxidative Stress in the Response of Endothelial Cells to Metals

The involvement of endothelial cells in inflammation and blood vessel formation (angiogenesis) makes them important for the integration of metal implants. Metal degradation products can, however, influence these processes, possibly leading to ineffective wound healing, prolonged inflammation and eventually aseptic loosening of the implant. Different metal degradation processes have been shown to lead to ROS formation. Oxidative stress, therefore, can mediate the reactions of the human body to the implant. While the response of endothelial cells to oxidative stress has been well studied, the effects of ROS produced as the result of metal degradation have not been addressed as yet. Therefore,…

research product

Xrcc2 deficiency sensitizes cells to apoptosis by MNNG and the alkylating anticancer drugs temozolomide, fotemustine and mafosfamide

DNA double-strand breaks (DSBs) are potent killing lesions, and inefficient repair of DSBs does not only lead to cell death but also to genomic instability and tumorigenesis. DSBs are repaired by non-homologous end-joining and homologous recombination (HR). A key player in HR is Xrcc2, a Rad51-like protein. Cells deficient in Xrcc2 are hypersensitive to X-rays and mitomycin C and display increased chromosomal aberration frequencies. In order to elucidate the role of Xrcc2 in resistance to anticancer drugs, we compared Xrcc2 knockout (Xrcc2-/-) mouse embryonic fibroblasts with the corresponding isogenic wild-type and Xrcc2 complemented knockout cells. We show that Xrcc2-/- cells are hypersen…

research product

The effects of metal implants on inflammatory and healing processes

Abstract Metal implants are known for their superior mechanical properties. However, cases of implant failure mainly due to aseptic loosening do occur. The formation of particulate wear debris and corrosion products, such as metal ions and reactive oxygen species, are considered to be crucial factors leading to the failure of metal implants. These metal degradation and corrosion products can induce inflammatory responses, mediated among others by neutrophils, macrophages and endothelial cells. Furthermore, these degradation products may affect blood vessel formation, one of the central processes in wound healing after implantation. Such events can lead to the aseptic loosening of implants c…

research product

Material‐Induced Cellular Interactions

research product

The Translesion Polymerase Rev3L in the Tolerance of Alkylating Anticancer Drugs

Temozolomide and fotemustine, representing methylating and chloroethylating agents, respectively, are used in the treatment of glioma and malignant melanoma. Because chemoresistance of these tumors is a common phenomenon, identification of the underlying mechanisms is needed. Here we show that Rev3L, the catalytic subunit of the translesion DNA polymerase zeta, mediates resistance to both temozolomide and fotemustine. Rev3L knockout cells are hypersensitive to both agents. It is remarkable that cells heterozygous for Rev3L showed an intermediate sensitivity. Rev3L is not involved in the tolerance of the toxic O6-methylguanine lesion. However, a possible role of Rev3L in the tolerance of O6-…

research product

Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro

Particulate matter is associated with different human diseases affecting organs such as the respiratory and cardiovascular systems. Very small particles (nanoparticles) have been shown to be rapidly internalized into the body. Since the sites of internalization and the location of the detected particles are often far apart, a distribution via the blood stream must have occurred. Thus, endothelial cells, which line the inner surface of blood vessels, must have had direct contact with the particles. In this study we tested the effects of metallic nanoparticles (Co and Ni) on oxidative stress and proinflammatory response in human endothelial cells in vitro. Exposure to both nanoparticle types…

research product

Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration

Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan…

research product

Angiogenesis control in spine regeneration

Abstract: The intervertebral disc (IVD) has a complex vascularisation pattern. While the nucleus pulposus is avascular, the annulus fibrosus as well as the endplates are vascularised. IVD degeneration is often accompanied, on the one hand, by blood vessel ingrowth into the nucleus pulposus and, on the other hand, by diminished vascularisation of the endplates. Tissue engineering of IVD, therefore, has to address the differences in the vascularisation of IVD compartments. This chapter summarises current knowledge about the mechanisms of angiogenesis and its physiological and pathological role in IVD biology. Different strategies to control angiogenesis are discussed in the chapter with examp…

research product

Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration.

Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential material for tissue engineering of the inner part of the IVD, the nucleus pulposus (NP). The material displayed a gel-like behavior, it was easily injectable as demonstrated by suitable tests and did …

research product

Cisplatin sensitivity is related to late DNA damage processing and checkpoint control rather than to the early DNA damage response

The present study aimed at elucidating mechanisms dictating cell death triggered by cisplatin-induced DNA damage. We show that CL-V5B hamster mutant cells, a derivative of V79B, are hypersensitive to cisplatin-induced apoptotic death. CL-V5B cells are characterized by attenuated cisplatin-induced early (2-6 h) stress response, such as phosphorylation of stress-activated protein kinases (SAPK/JNK), ATM and Rad3-related (ATR) protein kinase, histone H2AX and checkpoint kinase-1 (Chk-1). Human FANCC cells also showed a reduced phosphorylation of H2AX and SAPK/JNK at early time point after cisplatin treatment. This was not the case for BRCA2-defective VC-8 hamster cells, indicating that the FA …

research product

In vitro evaluation of a biomaterial-based anticancer drug delivery system as an alternative to conventional post-surgery bone cancer treatment

Patients diagnosed with osteosarcoma are currently treated with intravenous injections of anticancer agents after tumor resection. However, due to remaining neoplastic cells at the site of tumor removal, cancer recurrence often occurs. Successful bone regeneration combined with the control of residual cancer cells presents a challenge for tissue engineering. Cyclodextrins loaded with chemotherapeutic drugs reversibly release the drugs over time. Hydroxyapatite bone biomaterials coated with doxorubicin-loaded cyclodextrin should release the drug with time after implantation directly at the original tumor site and may be a way to eliminate residual neoplastic cells. In the present study, we h…

research product

The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages.

Nowadays aseptic loosening is the most common cause of orthopaedic implant failure. Some of its reasons have already been described up to now; however, others remain still hypothetical. Besides the inflammatory response to wear particles originating at different sources, the role of reactive oxygen species as products of cellular reactions and/or as a result of the process of corrosion of an implant leading to implant failure has recently been discussed too. In the present study, we used a galvanostatic polarization to simulate the cathodic partial reaction of the corrosion process at a titanium alloy surface. With respect to cells occurring at the interface of a metal implant, the behaviou…

research product

Response of human endothelial cells to oxidative stress on Ti6Al4V alloy.

Titanium and its alloys are amongst the most frequently used materials in bone and dental implantology. The good biocompatibility of titanium(-alloys) is attributed to the formation of a titanium oxide layer on the implant surface. However, implant failures do occur and this appears to be due to titanium corrosion. Thus, cells participating in the wound healing processes around an implanted material, among them endothelial cells, might be subjected to reactive oxygen species (ROS) formed by electrochemical processes during titanium corrosion. Therefore, we studied the response of endothelial cells grown on Ti6Al4V alloy to H(2)O(2) and compared this with the response of endothelial cells gr…

research product