0000000000188780

AUTHOR

Mark Tobin

First observation of the doubly charmed baryon decay Ξcc++→Ξc+π+

The doubly charmed baryon decay Ξcc++→Ξc+π+ is observed for the first time, with a statistical significance of 5.9σ, confirming a recent observation of the baryon in the Λc+K−π+π+ final state. The data sample used corresponds to an integrated luminosity of 1.7 fb−1, collected by the LHCb experiment in pp collisions at a center-of-mass energy of 13 TeV. The Ξcc++ mass is measured to be 3620.6±1.5(stat)±0.4(syst)±0.3(Ξc+) MeV/c2 and is consistent with the previous result. The ratio of branching fractions between the decay modes is measured to be [B(Ξcc++→Ξc+π+)×B(Ξc+→pK−π+)]/[B(Ξcc++→Λc+K−π+π+)×B(Λc+→pK−π+)]=0.035±0.009(stat)±0.003(syst).

research product

First experimental study of photon polarization in radiative B0s decays.

The polarization of photons produced in radiative $B^{0}_{s}$ decays is studied for the first time. The data are recorded by the LHCb experiment in $pp$ collisions corresponding to an integrated luminosity of 3fb$^{-1}$ at center-of-mass energies of $7$ and $8$TeV. A time-dependent analysis of the $B^{0}_{s} \to \phi \gamma$ decay rate is conducted to determine the parameter ${\mathcal{A}}^\Delta$, which is related to the ratio of right- over left-handed photon polarization amplitudes in $b \to s \gamma$ transitions. A value of ${\mathcal{A}}^\Delta=-0.98^{\,+0.46\,+0.23}_{\,-0.52\,-0.20}$ is measured. This result is consistent with the Standard Model prediction within two standard deviatio…

research product

Measurement of CP asymmetries in two-body B(s)0 -meson decays to charged pions and kaons

The time-dependent CP asymmetries in B0→π+π− and B0s→K+K− decays are measured using a data sample of p p collisions corresponding to an integrated luminosity of 3.0  fb−1, collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. The same data sample is used to measure the time-integrated CP asymmetries in B0→K+π− and B0s→π+K− decays. The results are Cπ+π−=−0.34±0.06±0.01, Sπ+π−=−0.63±0.05±0.01, CK+K−=0.20±0.06±0.02, SK+K−=0.18±0.06±0.02, AΔΓK+K−=−0.79±0.07±0.10, AB0CP=−0.084±0.004±0.003, and AB0sCP=0.213±0.015±0.007, where the first uncertainties are statistical and the second systematic. Evidence for CP violation is found in the B0s→K+K− decay for the first time.

research product

Measurement of the c0 Baryon Lifetime

We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …

research product

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

research product

Measurement of the W boson mass

The W boson mass is measured using proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 1.7fb(-1) recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p(T) distribution of a sample of W ->mu y decays and the phi* distribution of a sample of Z -> mu mu decays the W boson mass is determined to be

research product

Dataset and Data analysis for "Infrared based saliva screening test for COVID-19"

External Modelling 1 is the Quasar .ows model to process the Source data 1 to generate the PCA plot shown in Figure 4B and loadings plots in Figure 4C. External Modelling 2 is the MCDCV-PLS-DA Matlab model that can be used in combination with PLS-Tool Box to generate the Receiver Operating Curves (ROC) and the prediction model shown in Figures 4D and 4E, respectively. Source Data 1 is for the PCA modelling. Source Data 2 for the MCDCV-PLS-DA.

research product