0000000000189525

AUTHOR

Paolo Aniello

Time-dependent perturbation treatment of independent Raman schemes

The problem of a trapped ion subjected to the action of two or more independent Raman schemes is analysed through a suitable time-dependent perturbative approach based on the factorization of the evolution operator in terms of other unitary operators. We show that the dynamics of the system may be traced back to an effective Hamiltonian up to a suitable dressing. Moreover, we give the method to write the master equation corresponding to the case wherein spontaneous decays occur.

research product

Perturbative Treatment of the Evolution Operator Associated with Raman Couplings

A novel perturbative treatment of the time evolution operator of a quantum system is applied to the model describing a Raman-driven trapped ion in order to obtain a suitable 'effective model'. It is shown that the associated effective Hamiltonian describes the system dynamics up to a certain transformation which may be interpreted as a 'dynamical dressing' of the effective model.

research product

Coarse grained and fine dynamics in trapped ion Raman schemes

A novel result concerning Raman coupling schemes in the context of trapped ions is obtained. By means of an operator perturbative approach, it is shown that the complete time evolution of these systems (in the interaction picture) can be expressed, with a high degree of accuracy, as the product of two unitary evolutions. The first one describes the time evolution related to an effective coarse grained dynamics. The second is a suitable correction restoring the {\em fine} dynamics suppressed by the coarse graining performed to adiabatically eliminate the nonresonantly coupled atomic level.

research product