0000000000190334
AUTHOR
M Abbasi
Eco-Friendly Estimation of Heavy Metal Contents in Grapevine Foliage Using In-Field Hyperspectral Data and Multivariate Analysis
Heavy metal monitoring in food-producing ecosystems can play an important role in human health safety. Since they are able to interfere with plants’ physiochemical characteristics, which influence the optical properties of leaves, they can be measured by in-field spectroscopy. In this study, the predictive power of spectroscopic data is examined. Five treatments of heavy metal stress (Cu, Zn, Pb, Cr, and Cd) were applied to grapevine seedlings and hyperspectral data (350−2500 nm), and heavy metal contents were collected based on in-field and laboratory experiments. The partial least squares (PLS) method was used as a feature selection technique, and multiple linear regressions (…
Optimal Spectral Wavelengths for Discriminating Orchard Species Using Multivariate Statistical Techniques
Sustainable management of orchard fields requires detailed information about the tree types, which is a main component of precision agriculture programs. To this end, hyperspectral imagery can play a major role in orchard tree species mapping. Efficient use of hyperspectral data in combination with field measurements requires the development of optimized band selection strategies to separate tree species. In this study, field spectroscopy (350 to 2500 nm) was performed through scanning 165 spectral leaf samples of dominant orchard tree species (almond, walnut, and grape) in Chaharmahal va Bakhtiyari province, Iran. Two multivariable methods were employed to identify the optimum wavelengths:…
40(th) EASD Annual Meeting of the European Association for the Study of Diabetes : Munich, Germany, 5-9 September 2004
Scenario-based discrimination of common grapevine varieties using in-field hyperspectral data in the western of Iran
Abstract Field spectroscopy is an accurate, rapid and nondestructive technique for monitoring of agricultural plant characteristics. Among these, identification of grapevine varieties is one of the most important factors in viticulture and wine industry. This study evaluated the discriminatory ability of field hyperspectral data and statistical techniques in case of five common grapevine varieties in the western of Iran. A total of 3000 spectral samples were acquired at leaf and canopy levels. Then, in order to identify the best approach, two types of hyperspectral data (wavelengths from 350 to 2500 nm and 32 spectral indices), two data reduction methods (PLSR and ANOVA-PCA) and two classif…