0000000000190828

AUTHOR

Elise Egron

0000-0002-1532-4142

showing 6 related works from this author

A TEST of the NATURE of the FE K LINE in the NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

2015

Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analys…

SerpensAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion disk01 natural sciencesSpectral linestars: neutronSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesEmission spectrum010303 astronomy & astrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and Astrophysicsprofiles; stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [accretion accretion disks; line]Astronomy and AstrophysicK-lineX-rays: binarieBlack holeNeutron starline: profileSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

2012

We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsCompact star01 natural sciencesSpectral lineidentification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binaries [line]GravitationSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsline: identification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binariesAstronomyAstronomy and AstrophysicsRadiusAccretion (astrophysics)Neutron starAmplitudeSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A complete X-ray spectral coverage of the 2010 May-June outbursts of Circinus X-1

2012

Circinus X-1 is a neutron-star-accreting X-ray binary in a wide (P$_{\rm orb}$ = 16.6 d), eccentric orbit. After two years of relatively low X-ray luminosity, in May 2010 Circinus X-1 went into outburst, reaching 0.4 Crab flux. This outburst lasted for about two orbital cycles and was followed by another shorter and fainter outburst in June. We focus here on the broadband X-ray spectral evolution of the source as it spans about three order of magnitudes in flux. We attempt to relate luminosity, spectral shape, local absorption, and orbital phase. We use multiple Rossi-XTE/PCA (3.0--25 keV) and Swift/XRT (1.0--9.0 keV) observations and a 20 ks long Chandra/HETGS observation (1.0--9.0 keV), t…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral shape analysis010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-raybinaries X-rays: individuals: Circinus X-1 accretion accretion disks line: profiles [X-rays]FOS: Physical sciencesAstronomy and AstrophysicsOrbital eccentricityAstrophysicsLight curve01 natural sciencesSpectral evolutionSettore FIS/05 - Astronomia E AstrofisicaAccretion disc13. Climate actionSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsCircinusX-rays: binaries X-rays: individuals: Circinus X-1 accretion accretion disks line: profilesAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

X-ray spectroscopy of MXB 1728-34 with XMM-Newton

2011

We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection mo…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray spectroscopy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaBolometerFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general [line]01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicaAccretion discSpace and Planetary Sciencelaw0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsline: formation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general
researchProduct

Subarcsecond Location of IGR J17480-2446 with Rossi XTE

2012

On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEphemeris01 natural sciencesOccultationSettore FIS/05 - Astronomia E AstrofisicaPulsarObservatory0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAccretion (astrophysics)general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binaries [Moon pulsars]Moon pulsars: general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binariesSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenabusiness
researchProduct

A relativistic iron emission line from the neutron star low-mass X-ray binary GX 3+1

2012

We present the results of a spectroscopic study of the Fe K{\alpha} emission of the persistent neutron-star atoll low-mass X-ray binary and type I X-ray burster GX 3+1 with the EPIC-PN on board XMM-Newton. The source shows a flux modulation over several years and we observed it during its fainter phase, which corresponds to an X-ray luminosity of Lx~10^37 ergs/s. When fitted with a two-component model, the X-ray spectrum shows broad residuals at \sim6-7 keV that can be ascribed to an iron K{\alpha} fluorescence line. In addition, lower energy features are observed at \sim3.3 keV, \sim3.9 keV and might originate from Ar XVIII and Ca XIX. The broad iron line feature is well fitted with a rela…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomenaidentification line: profiles X-rays: individuals: GX 3+1 X-rays: binaries stars: neutron [line]X-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusAstrophysics::Cosmology and Extragalactic AstrophysicsType (model theory)01 natural sciencesLuminosityNeutron starSettore FIS/05 - Astronomia E Astrofisicaline: identification line: profiles X-rays: individuals: GX 3+1 X-rays: binaries stars: neutronSpace and Planetary Science0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct