Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids.
Metal single-atom catalysts (SACs) promise great rewards in terms of metal atom efficiency. However, the requirement of particular conditions and supports for their synthesis, together with the need of solvents and additives for catalytic implementation, often precludes their use under industrially viable conditions. Here, we show that palladium single atoms are spontaneously formed after dissolving tiny amounts of palladium salts in neat benzyl alcohols, to catalyze their direct aerobic oxidation to benzoic acids without ligands, additives, or solvents. With this result in hand, the gram-scale preparation and stabilization of Pd SACs within the functional channels of a novel methyl-cystein…
MOF-Stabilized Perfluorinated Palladium Cages Catalyze the Additive-Free Aerobic Oxidation of Aliphatic Alcohols to Acids
Extremely high electrophilic metal complexes, composed by a metal cation and very electron poor σ-donor ancillary ligands, are expected to be privileged catalysts for oxidation reactions in organic chemistry. However, their low lifetime prevents any use in catalysis. Here we show the synthesis of fluorinated pyridine-Pd coordinate cages within the channels of an anionic tridimensional metal-organic framework (MOF), and their use as efficient metal catalysts for the aerobic oxidation of aliphatic alcohols to carboxylic acids without any additive. Mechanistic studies strongly support that the MOF-stabilized coordination cage with perfluorinated ligands unleashes the full electrophilic potenti…
Self-assembly of catalytically-active supramolecular coordination compounds within metal-organic frameworks
[EN] Supramolecular coordination compounds (SCCs) represent the power of coordination chemistry methodologies to self-assemble discrete architectures with targeted properties. SCCs are generally synthesized in solution, with isolated fully coordinated metal atoms as structural nodes, thus severely limited as metal-based catalysts. Metal-organic frameworks (MOFs) show unique features to act as chemical nanoreactors for the in situ synthesis and stabilization of otherwise not accessible functional species. Here, we present the self-assembly of Pd-II SCCs within the confined space of a pre-formed MOF (SCCs@MOF) and its post-assembly metalation to give a Pd-II-Au-III supra molecular assembly, c…
Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1–5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather …
Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs)
Amides and esters are prevalent chemicals in Nature, industry and academic laboratories. Thus, it is not surprising that a plethora of synthetic methods for these compounds has been developed along the years. However, these methods are not 100% atom economical and generally require harsh reagents or reaction conditions. Here we show a “spring–loaded”, 100% atom–efficient amidation and esterification protocol which consists in the ring opening of cyclopropenones with amines or alcohols. Some alkyl amines react spontaneously at room temperature in a variety of solvents and reaction conditions, including water at different pHs, while other alkyl amines, aromatic amines and alcohols react in th…
CCDC 1995182: Experimental Crystal Structure Determination
Related Article: Estefanía Tiburcio, Rossella Greco, Marta Mon, Jordi Ballesteros-Soberanas, Jesús Ferrando-Soria, Miguel López-Haro, Juan Carlos Hernández-Garrido, Judit Oliver-Meseguer, Carlo Marini, Mercedes Boronat, Donatella Armentano, Antonio Leyva-Pérez, Emilio Pardo|2021|J.Am.Chem.Soc.|143|2581|doi:10.1021/jacs.0c12367
CCDC 1892911: Experimental Crystal Structure Determination
Related Article: Rosa Adam, Marta Mon, Rossella Greco, Lucas H. G. Kalinke, Alejandro Vidal-Moya, Antonio Fernandez, Richard E. P. Winpenny, Antonio Dom��nech-Carb��, Antonio Leyva-P��rez, Donatella Armentano, Emilio Pardo, Jes��s Ferrando-Soria|2019|J.Am.Chem.Soc.|141|10350|doi:10.1021/jacs.9b03914
CCDC 2090411: Experimental Crystal Structure Determination
Related Article: Rossella Greco, Estefanía Tiburcio, Brenda Palomar-De Lucas, Jesús Ferrando-Soria, Donatella Armentano, Emilio Pardo, Antonio Leyva-Pérez|2022|Mol.Catal.|522|112228|doi:10.1016/j.mcat.2022.112228
CCDC 1892914: Experimental Crystal Structure Determination
Related Article: Rosa Adam, Marta Mon, Rossella Greco, Lucas H. G. Kalinke, Alejandro Vidal-Moya, Antonio Fernandez, Richard E. P. Winpenny, Antonio Dom��nech-Carb��, Antonio Leyva-P��rez, Donatella Armentano, Emilio Pardo, Jes��s Ferrando-Soria|2019|J.Am.Chem.Soc.|141|10350|doi:10.1021/jacs.9b03914
CCDC 2107391: Experimental Crystal Structure Determination
Related Article: Rossella Greco, Estefania Tiburcio-Fortes, Antonio Fernandez, Carlo Marini, Alejandro Vidal-Moya, Judit Oliver-Meseguer, Donatella Armentano, Emilio Pardo, Jesús Ferrando-Soria, Antonio Leyva-Pérez|2022|Chem.-Eur.J.|28||doi:10.1002/chem.202103781
CCDC 1995184: Experimental Crystal Structure Determination
Related Article: Estefanía Tiburcio, Rossella Greco, Marta Mon, Jordi Ballesteros-Soberanas, Jesús Ferrando-Soria, Miguel López-Haro, Juan Carlos Hernández-Garrido, Judit Oliver-Meseguer, Carlo Marini, Mercedes Boronat, Donatella Armentano, Antonio Leyva-Pérez, Emilio Pardo|2021|J.Am.Chem.Soc.|143|2581|doi:10.1021/jacs.0c12367
CCDC 1995183: Experimental Crystal Structure Determination
Related Article: Estefanía Tiburcio, Rossella Greco, Marta Mon, Jordi Ballesteros-Soberanas, Jesús Ferrando-Soria, Miguel López-Haro, Juan Carlos Hernández-Garrido, Judit Oliver-Meseguer, Carlo Marini, Mercedes Boronat, Donatella Armentano, Antonio Leyva-Pérez, Emilio Pardo|2021|J.Am.Chem.Soc.|143|2581|doi:10.1021/jacs.0c12367
CCDC 1892912: Experimental Crystal Structure Determination
Related Article: Rosa Adam, Marta Mon, Rossella Greco, Lucas H. G. Kalinke, Alejandro Vidal-Moya, Antonio Fernandez, Richard E. P. Winpenny, Antonio Dom��nech-Carb��, Antonio Leyva-P��rez, Donatella Armentano, Emilio Pardo, Jes��s Ferrando-Soria|2019|J.Am.Chem.Soc.|141|10350|doi:10.1021/jacs.9b03914