0000000000193931
AUTHOR
Yiqun Yu
Unraveling the activation mechanism of olfactory receptors. Towards the future of structure odor relationships
Unraveling the activation mechanism of olfactory receptors. Towards the future of structure odor relationships. 14. Weurman flavour research symposium
G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons
Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical res…
Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition
International audience; G protein-coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in non-olfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and the volume of the odorant-binding pocket, m…