0000000000194110

AUTHOR

Rachel Crespo-otero

0000-0002-8725-5350

Quantitative Structure–Activity Relationship of the 4,5α-Dihydrotestosterone Steroid Family

Predictive Quantitative Structure - Activity Relationship (QSAR) models of Anabolic/ Androgenic (A/A) activities for the 4,5a-dihydrotestosterone steroid family were obtained by means of multilinear regression using quantum and physicochemical Molecular Descriptors (MDs) as well as a genetic algorithm for the selection of the best subset of MDs. MDs included in our QSAR models allow the structural interpretation of the biological process, evidencing the main role of the shape of molecules, hydrophobicity, and electronic properties. Attempts were made to include lipophilicity (octanol-water partition coefficient) as well as electronic (lowest unoccupied molecular orbital properties and dipol…

research product

Chemometric and chemoinformatic analyses of anabolic and androgenic activities of testosterone and dihydrotestosterone analogues

Predictive quantitative structure-activity relationship (QSAR) models of anabolic and androgenic activities for the testosterone and dihydrotestosterone steroid analogues were obtained by means of multiple linear regression using quantum and physicochemical molecular descriptors (MD) as well as a genetic algorithm for the selection of the best subset of variables. Quantitative models found for describing the anabolic (androgenic) activity are significant from a statistical point of view: R2 of 0.84 (0.72 and 0.70). A leave-one-out cross-validation procedure revealed that the regression models had a fairly good predictability [q2 of 0.80 (0.60 and 0.59)]. In addition, other QSAR models were …

research product

Applying pattern recognition methods plus quantum and physico-chemical molecular descriptors to analyze the anabolic activity of structurally diverse steroids.

The great cost associated with the development of new anabolic-androgenic steroid (AASs) makes necessary the development of computational methods that shorten the drug discovery pipeline. Toward this end, quantum, and physicochemical molecular descriptors, plus linear discriminant analysis (LDA) were used to analyze the anabolic/androgenic activity of structurally diverse steroids and to discover novel AASs, as well as also to give a structural interpretation of their anabolic-androgenic ratio (AAR). The obtained models are able to correctly classify 91.67% (86.27%) of the AASs in the training (test) sets, respectively. The results of predictions on the 10% full-out cross-validation test al…

research product