0000000000194448

AUTHOR

Hella Snoek

showing 7 related works from this author

Model-Independent Evidence forJ/ψpContributions toΛb0→J/ψpK−Decays

2016

The data sample of Lambda(0)(b) -> J/psi pK(-) decays acquired with the LHCb detector from 7 and 8 TeV pp collisions, corresponding to an integrated luminosity of 3 fb(-1), is inspected for the presence of J/psi p or J/psi K- contributions with minimal assumptions about K(-)p contributions. It is demonstrated at more than nine standard deviations that Lambda(0)(b) -> J/psi pK(-) decays cannot be described with K- p contributions alone, and that J/psi K- contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for P-c(+)-> J/psi p charmonium-pentaquark states in the same data sample.

PhysicsLuminosity (scattering theory)010308 nuclear & particles physicsQuark modelGeneral Physics and AstronomyLambda01 natural sciencesPentaquarkNuclear physicsBaryon13. Climate action0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

First experimental study of photon polarization in radiative B0s decays.

2017

The polarization of photons produced in radiative $B^{0}_{s}$ decays is studied for the first time. The data are recorded by the LHCb experiment in $pp$ collisions corresponding to an integrated luminosity of 3fb$^{-1}$ at center-of-mass energies of $7$ and $8$TeV. A time-dependent analysis of the $B^{0}_{s} \to \phi \gamma$ decay rate is conducted to determine the parameter ${\mathcal{A}}^\Delta$, which is related to the ratio of right- over left-handed photon polarization amplitudes in $b \to s \gamma$ transitions. A value of ${\mathcal{A}}^\Delta=-0.98^{\,+0.46\,+0.23}_{\,-0.52\,-0.20}$ is measured. This result is consistent with the Standard Model prediction within two standard deviatio…

General PhysicsPhotonModels beyond the standard modeldistributions asymmetries toolPhysics MultidisciplinaryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNONuclear physicsPhysics and Astronomy (all)High Energy Physics - Experiment (hep-ex)ASYMMETRIES0103 physical sciencesPhoton polarizationLeptonic semileptonic and radiative decays of bottom mesonDISTRIBUTIONS; ASYMMETRIES; TOOLRadiative transfer[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]DISTRIBUTIONSTOOLSDG 7 - Affordable and Clean Energy010306 general physicsPhysicsScience & Technology02 Physical Sciences/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyhep-ex010308 nuclear & particles physicsPhysicsParticle physicsPolarization (waves)HEPB physics photon polarization.3. Good healthLHCbAmplitudePhysical SciencesBottom mesons (|B|>0)High Energy Physics::ExperimentLHCFísica de partículesExperimentsPolarization in interactions and scatteringParticle Physics - Experiment
researchProduct

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

2015

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

fundamental particleCompact Muon Solenoidstandard model flavor changing neutral currentsradioisotope decayB physicGaussian methodMU(+)MU(-)Temel Bilimler (SCI)rare decay [B/s0]Elementary particleATLAS DETECTOR12.15.MmÇOK DİSİPLİNLİ BİLİMLERRARE B-MESON DECAYS7000 GeV-cms8000 GeV-cmsSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energyddc:0702 CHARGED LEPTONSscattering [p p]High energy physics ; Experimental particle physics ; LHC ; CMS ; Standard ModelQC[Anahtar Kelime Yok]Large Hadron ColliderMedicine (all); Multidisciplinarystandard3. Good healthHigh Energy Physics - PhenomenologyCERN LHC CollFIS/01 - FISICA SPERIMENTALEpriority journalHiggs bosonScience & Technology - Other TopicsPARTICLE PHYSICSmass spectrum [dimuon]Protonviolationcolliding beams [p p]physicschemical analyzerMesonModels beyond the standard modelprobabilitymesonelectromagnetic radiationB/s0 --> muon+ muon-Nuclear physicsbranching ratio: measured [B0]SEARCHLeptonic semileptonic and radiative decays of bottom mesonRARE B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; LHC; CMS DETECTOR; LHCb DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0;B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; 2 CHARGED LEPTONS; ATLAS; DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0; COLLIDER; PARTICLE010306 general physicsScience & TechnologyMuonMULTIDISCIPLINARY SCIENCES010308 nuclear & particles physicsBranching fractionMeson Bnull hypothesisDoğa Bilimleri GenelElementary particlesLARGE HADRON COLLIDERHEPp(p)over-bar collisionsNATURAL SCIENCES GENERALrare decay [B0]13.20.HeMINIMAL FLAVOR VIOLATIONchemical analysisprecisionB0 --> muon+ muon-Física de partículesExperimental particle physicsleptonic decay [B0]Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelB-meson decays; p(p)over-bar collisions; branching fraction; root-s=1.96 tev; search; mu(+)mu(-); b-0; b-s(0); violation; modelsLarge Hadron Collider (LHC)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNeutral currentCOLLIDER[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]uncertainty12.60.-iFlavour Physicmass spectrometryPhysicsExperimental particleMultidisciplinaryCMSMedicine (all)Temel BilimlerSettore FIS/01 - Fisica SperimentaleB-meson decaysATLASLarge Hadron Collider beautybranching ratio: measured [B/s0]root-s=1.96 tevNatural Sciences (SCI)LHCNatural SciencesPARTICLEdata processingParticle Physics - Experimentchemical reactionParticle physicsbranching fractionNOPARTICLE PHYSICS; LARGE HADRON COLLIDER; CMS; LHCBmodelsLHCBExperimental particle; physics; data processing; electromagnetic field; electromagnetic radiation; fundamental particle; Gaussian method; physics; precision; chemical analysis; chemical analyzer; chemical reaction; elementary particle; Large Hadron Collider beauty; mass spectrometry; meson; null hypothesis; prediction; priority journal; probability; radioisotope decay; standard; uncertainty;B-MESON DECAYSelectromagnetic fieldTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYRare Decay0103 physical sciencesElectromagnetic fieldB-0elementary particleSDG 7 - Affordable and Clean EnergyDETECTORCompact Muon SolenoidMultidisipliner/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyLHCb DETECTORCMS LHC Meson B Rare DecayMinimal flavor violationpredictionLeptonsLHC-Bleptonic decay [B/s0]LHCbRare decayMedicine (all) MultidisciplinaryRARE B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; LHC; CMS DETECTOR; LHCb DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0B-S(0)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentExperimentsexperimental resultsCMS DETECTOR
researchProduct

Amplitude analysis ofB+→J/ψϕK+decays

2017

The first full amplitude analysis of B+→J/ψϕK+ with J/ψ→μ+μ−, ϕ→K+K− decays is performed with a data sample of 3 fb−1 of pp collision data collected at s√=7 and 8 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into ϕK+, and four J/ψϕ structures are observed, each with significance over 5 standard deviations. The quantum numbers of these structures are determined with significance of at least 4 standard deviations. The lightest is best described as a D±sD∗∓s cusp, but a resonant interpretation is also possible with mass consistent with, but width much larger than, previous measurements of the claimed X(4140) state. The mode…

Cusp (singularity)PhysicsParticle physics010308 nuclear & particles physicsState (functional analysis)Quantum number01 natural sciencesStandard deviationNuclear physicsAmplitudeExcited state0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsSpin-½Physical Review D
researchProduct

Vector boson scattering: Recent experimental and theory developments

2018

This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.

Particle physicsStandard ModelGeneral Physics and AstronomyFOS: Physical sciencesvector boson: scatteringEWSB (Electroweak symmetry breaking); HEP; LHC; Standard Model; VBSLHC VBS HEP Standard Model EWSB (Electroweak symmetry breaking)01 natural sciences114 Physical sciencesVector bosonHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Point (geometry)Cost actionVBS010306 general physicsactivity reportParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsScatteringhep-exhep-phlcsh:QC1-999HEPHigh Energy Physics - PhenomenologyEWSB (Electroweak symmetry breaking)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]networkLHClcsh:PhysicsParticle Physics - Experiment
researchProduct

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

2021

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWFW and FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq and FAPESP, Brazil, NSERC, NRC, and CFI, Canada, CERN and ANID, Chile, CAS, MOST, and NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, and VSC CR, Czech Republic, DNRF and DNSRC, Denmark, IN2P3-CNRS and CEA-DRF/IRFU, France, SRNSFG, Georgia, BMBF, HGF, and MPG, Germany, GSRT, Greece, RGC and Hong Kong SAR, China, ISF and Benoziyo Center, Israel, INFN, Italy, MEXT and JSPS, Japan, CNR…

Systemgap [rapidity]heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Performanceangular correlation: long-rangeHadronMonte Carlo method01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)PpCollisionscorrelation function: two-particleSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentcalorimeter: forward spectrometerSettore FIS/01Physicsangular correlation: two-particletwo-particle [correlation function]Large Hadron Collider4. EducationATLAS experimentHeavy-Ion CollisionsMonte Carlo [numerical calculations]ATLASCalorimeterforward spectrometer [calorimeter]CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]medicine.anatomical_structureMultiplicityflowPseudorapidityDistributionsLhcnumerical calculations: Monte CarloParticle Physics - Experimentcharged particle: tracks530 PhysicscollectiveFOS: Physical sciencesLHC ATLAS High Energy Physicstransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ionscharged particle: multiplicityNuclear physicsmultiplicity [charged particle]scattering [heavy ion]Atlas (anatomy)long-range [angular correlation]0103 physical sciencesmedicineFluctuationsNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonHigh Energy Physicsperipheral010306 general physicshadron hadron: interactioninteraction [hadron hadron]LHC; Particle Physics; Photonuclear interactionstwo-particle [angular correlation]tracks [charged particle]010308 nuclear & particles physicsFísicaDetectorMultiplicity (mathematics)boundary conditionrapidity: gapcorrelationExperimental High Energy Physicsexperimental resultsModelPhysical Review C
researchProduct

Observation of Bc+→J/ψD(*)K(*) decays

2017

A search for the decays B + c → J / ψ D ( * ) 0 K + and B + c → J / ψ D ( * ) + K * 0 is performed with data collected at the LHCb experiment corresponding to an integrated luminosity of 3     fb − 1 . The decays B + c → J / ψ D 0 K + and B + c → J / ψ D * 0 K + are observed for the first time, while first evidence is reported for the B + c → J / ψ D * + K * 0 and B + c → J / ψ D + K * 0 decays. The branching fractions of these decays are determined relative to the B + c → J / ψ π + decay. The B + c mass is measured, using the J / ψ D 0 K + final state, to be 6274.28 ± 1.40 ( stat ) ± 0.32 ( syst )     MeV / c 2 . This is the most precise single measurement of the B + c mass to date.

PhysicsNuclear magnetic resonanceMeson010308 nuclear & particles physicsBranching fractionGenerator (category theory)0103 physical sciencesSingle measurementAnalytical chemistry010306 general physics01 natural sciencesLuminosityPhysical Review D
researchProduct