0000000000194566
AUTHOR
A. Faulstich
Towards laser cooling of fast Be+ ions in the storage ring TSR
Publisher Summary This chapter presents a clear understanding of laser-ion interactions under storage ring conditions to prepare the basis of laser cooling of fast-stored ion beams. In addition, the method of laser-induced fluorescence provides precise data for beam properties such as absolute velocity, momentum spread, and lifetime. 9Be+ ions stored in a heavy-ion storage ring are a promising species for laser cooling down to temperatures several orders of magnitude less than those reached for protons by electron cooling at the Novosibirsk ring. Short cooling times and microkelvin temperatures can be envisaged, where the structure of the ion beam is dominated by Coulomb repulsion. The chap…
Partial Laser Cooling and Saturation Spectroscopy on 9 MeV 7Li+ - Ions in a Storage Ring
Publisher Summary Laser cooling and spectroscopy in traps have reached impressive perfections. This chapter discusses laser cooling and partially Doppler-suppressed spectroscopy on stored ions at 5.4% speed of light in the test storage ring (TSR) heavy ion storage ring in Heidelberg. It discusses the requirements for saturation spectroscpy with two counterpropagating collinear laser beams. In contrast to Penning and RF-traps, the ions in a storage ring move at a high longitudinal velocity with small transverse harmonic oscillations around the central orbit with just a few times the orbiting frequency in the case of strong focussing. However, the injection of the high velocity beam introduce…
First experiments with the heidelberg test storage ring TSR
Abstract The Heidelberg heavy ion test storage ring TSR started operation in May 1988. The lifetimes of the ion beams observed in the first experiments can be explained by interactions with the residual gas. Multiple Coulomb scattering, single Coulomb scattering, electron capture and electron stripping are the relevant processes. Electron cooling of ions as heavy as O 8+ has been observed for the first time. With increasing particle number, the longitudinal Schottky noise spectrum becomes dominated by collective waves for cooled beams, allowing a determination of velocities of sound. After correcting for these coherent distortions fo the Schottky spectrum, the longitudinal beam temperature …