0000000000194688
AUTHOR
Sunniva Siem
Isospin Character of Low-Lying Pygmy Dipole States inPb208via Inelastic Scattering ofO17Ions
The properties of pygmy dipole states in Pb-208 were investigated using the Pb-208(O-17, O-17'gamma) reaction at 340 MeV and measuring the gamma decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted gamma rays and of the scattered particles were measured. The results are compared with (gamma, gamma') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2(+) and 3(-) states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first t…
Fine structure in the alpha decays of 226U and 230Pu
The nuclei 226U and 230Pu have been populated via reactions involving 208Pb targets bombarded by 22Ne and 26Mg projectiles. Fusion-evaporation residues were separated in-flight using a gas-filled recoil separator. A position-sensitive Si-strip detector was employed at the focal plane in order to identify correlated α-decay chains. Two fine structure α-decay lines have been observed. The first, with an energy of 7385(5) keV, is assigned as the α decay from 226U to the first excited 2+ state of 222Th. The second line, observed for the first time in this work, has an energy of 6961(30) keV and is assigned as the α decay from 230Pu to the first excited 2+ state of 226U. The excitation energy of…
Spectroscopy of 253No and its daughters
Abstract New high-statistics data have been obtained on the decay properties of 253 No and its daughters using the reaction 207 Pb( 48 Ca, 2n) 253 No. This was made possible thanks to an improved transmission of fusion–evaporation residues through the VASSILISSA recoil separator and an increased efficiency of the GABRIELA detector setup. The decay schemes of 253 No and 249 Fm have been revisited. The known level scheme of 249 Fm has been confirmed, including a new level at 669 keV excitation energy. The observation of L X-rays in coincidence with the α decay of 249 Fm gives additional support to the ground-state configuration of 1 / 2 + [ 631 ] instead of 5 / 2 + [ 622 ] for 245 Cf. In both…
Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O
L. Pellegri et al. ; 5 pags. ; 6 figs. ; open access article under the CC BY license. Funded by SCOAP3
The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation
The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler …
Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions
A measurement of the high-lying states in 208Pb has been made using 17O beams at 20 MeV/u. The gamma decay following inelastic excitation was measured with the detector system AGATA Demonstrator based on segmented HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators and to an array of Si detectors. Preliminary results in comparison with (γ,γ’) data, for states in the 5-8 MeV energy interval, are presented.
Spectroscopy of Low-lying States in $^{140}$Sm
International audience; Electromagnetic transition strengths and spectroscopic quadrupole moments for Sm-140 were measured by means of multi-step Coulomb excitation with radioactive beam at the ISOLDE facility at CERN. A complementary experiment was performed at the Heavy Ion Laboratory in Warsaw to assign spins for non-yrast states using the angular correlation technique. Based on the new experimental data previous spin assignments need to be revised.
Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of Hg-182, Hg-184, Hg-186 and Hg-188
The neutron-deficient mercury isotopes serve as a classical example of shape coexistence, whereby at low energy near-degenerate nuclear states characterized by different shapes appear. The electromagnetic structure of even-mass 182-188 Hg isotopes was studied using safe-energy Coulomb excitation of neutron-deficient mercury beams delivered by the REX-ISOLDE facility at CERN. The population of $ 0^{+}_{1,2}$01,2+, $ 2^{+}_{1,2}$21,2+and $ 4^{+}_{1}$41+states was observed in all nuclei under study. Reduced E2 matrix elements coupling populated yrast and non-yrast states were extracted, including their relative signs. These are a sensitive probe of shape coexistence and may be used to validate…
Novel Techniques for Constraining Neutron-capture Rates relevant to Heavy-element Nucleosynthesis
In this contribution we discuss new experimental approaches to indirectly provide information on neutron-capture rates relevant to the $r$-process. In particular, we focus on applications of the Oslo method to extract fundamental nuclear properties for reaction-rate calculations: the nuclear level density and the $\gamma$ strength function. Two methods are discussed in detail, the Oslo method in inverse kinematics and the beta-Oslo method. These methods present a first step towards constraining neutron-capture rates of importance to the $r$-process.
Experimental Neutron Capture Rate Constraint Far from Stability
Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutro…