0000000000195037

AUTHOR

Frédéric Herbst

showing 17 related works from this author

Enhancement of visible light photoelectrocatalytic activity of ZnO(core)/TiO2(shell) composite by N-doping and decorating with Au0 nanoparticles

2017

Abstract The composites consisting of ITO-supported ZnO nanorods covered with TiO2 shell were doped with nitrogen and decorated with gold nanoparticles in order to improve their photocatalytic activity under visible light. N-doped TiO2 (TiO2(N)) was prepared under mild conditions through a simple sol-gel synthesis in the presence of NH4Cl. Such procedure results in formation of a highly porous shell of TiO2(N) on the ZnO nanorods. The gold nanoparticles (AuNPs) of the size 7–25 nm were grafted onto the surface of TiO2 as well as TiO2(N) by a photodeposition method from aqueous solution of [AuCl(4-x)(OH)x]− precursor at pH 6.7. The composition and microstructure of the prepared samples were …

PhotocurrentAqueous solutionMaterials scienceGeneral Chemical EngineeringNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesX-ray photoelectron spectroscopyColloidal goldElectrochemistryPhotocatalysisNanorod0210 nano-technologyNuclear chemistryVisible spectrumElectrochimica Acta
researchProduct

The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization.

2014

15 pages; International audience; The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomi…

ProteomicsBiomineralizationPhysiologyCoralCell Membraneslcsh:MedicineSpectrum Analysis RamanBiochemistryAcropora milleporaMaterials PhysicsSpectroscopy Fourier Transform Infraredcristallcsh:ScienceMicrostructurecorailAcetic AcidAminationExtracellular Matrix ProteinsMineralsMultidisciplinarybiologyEcologyMonosaccharidesMineralogyAnthozoaBiochemistryprotéineCoralsPhysical SciencesCellular Structures and OrganellesCrystallizationcalciteResearch ArticleMaterials ScienceProtein domainmatrice extracellulaireMarine BiologyBone and BonesCalcium CarbonateAnthozoamonosaccharideAnimals14. Life underwater[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsIntegrin bindingStaghorn corallcsh:RBiology and Life SciencesProteinsMembrane ProteinsCell Biology[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterialsbiology.organism_classificationTransmembrane ProteinsSolubilityEarth Scienceslcsh:QPhysiological ProcessesGelsFunction (biology)Biomineralization
researchProduct

Nanodiamond‐Palladium Core–Shell Organohybrid Synthesis: A Mild Vapor‐Phase Procedure Enabling Nanolayering Metal onto Functionalized sp 3 ‐Carbon

2018

NanocompositeMaterials scienceVapor phasechemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsDiamondoid01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsMetalchemistryChemical engineeringvisual_artElectrochemistryvisual_art.visual_art_mediumSelf-assembly0210 nano-technologyNanodiamondCarbonPalladiumAdvanced Functional Materials
researchProduct

Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel

2017

Abstract The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn) 3 O 4 /Cr 2 O 3 scale formed on the polished samples whereas external Fe 3 O 4 and (Cr,Fe) 2 O 3 oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means o…

010302 applied physicsMaterials scienceHydrogenMetallurgyGeneral Physics and AstronomyPolishingchemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectron spectroscopySurfaces Coatings and FilmsCorrosionX-ray photoelectron spectroscopychemistryResidual stress0103 physical sciences0210 nano-technologySurface finishingApplied Surface Science
researchProduct

Preparation of magnetic composites of MIL-53(Fe) or MIL-100(Fe) via partial transformation of their framework into γ-Fe2O3

2016

A novel two-step approach is proposed to obtain magnetically active composite materials consisting of MIL-53(Fe) or MIL-100(Fe) and γ-Fe2O3 particles. The first step consists in a partial transformation of the framework into a layer of γ-FeO(OH) (lepidocrocite) covering the MOF particles. We found that such a transformation can be realized under air-free conditions by hydrolysing the MOFs at pH 6.2 in the presence of FeSO4. In the second step the obtained γ-FeO(OH)/MOF composite is heated under an air flow at 250 °C in order to transform γ-FeO(OH) to γ-Fe2O3. The thus prepared composites containing 40 wt% of the magnetic phase were characterized in detail by XRD, HRTEM, FESEM, N2 adsorption…

Materials scienceRenewable Energy Sustainability and the EnvironmentComposite number02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural sciences0104 chemical sciencesAdsorptionSpecific surface areaengineeringGeneral Materials ScienceCrystalliteLepidocrociteComposite material0210 nano-technologyHigh-resolution transmission electron microscopySuperparamagnetismJournal of Materials Chemistry A
researchProduct

Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid…

2019

We present a new device called a double lateral heterojunction (DLH) as an ammonia sensor in humid atmosphere. It combines polyaniline derivatives in their poor conducting state with a highly conductive molecular material, lutetium bisphthalocyanine, LuPc2. Polyaniline and poly(2,5-dimethoxyaniline) are electrodeposited on ITO interdigitated electrodes, leading to an original device that can be obtained only by electrochemistry and not by other solution processing techniques. Both polymers lead to highly conducting materials that require a neutralization step before their coverage by LuPc2. While the device based on polyaniline shows ohmic behavior, the nonlinear I- V characteristics of the…

Materials sciencePolymersBioengineering02 engineering and technologyElectrochemistry01 natural scienceschemistry.chemical_compoundAmmoniaLimit of DetectionPolyaniline[CHIM]Chemical SciencesInstrumentationOhmic contactElectrical conductorComputingMilieux_MISCELLANEOUSFluid Flow and Transfer ProcessesConductive polymerchemistry.chemical_classificationAniline Compoundsbusiness.industryProcess Chemistry and Technology010401 analytical chemistryElectric ConductivityHumidityHeterojunctionPolymer021001 nanoscience & nanotechnologyElectroplating0104 chemical sciencesDielectric spectroscopySemiconductorschemistryOptoelectronics0210 nano-technologybusiness
researchProduct

Immobilization of copper complexes with (1,10-phenanthrolinyl)phosphonates on titania supports for sustainable catalysis

2017

Different strategies for the immobilization of copper complexes with 1,10-phenanthroline (phen) using the phosphonate anchoring group were investigated to prepare robust and porous heterogeneous catalysts. Homoleptic and heteroleptic copper(I) complexes with phen bearing the bis(trimethylsiloxy)phosphoryl anchoring group (Pphen-Si) at different positions of the phen backbone were prepared and covalently incorporated into titania (TiO2) xerogels by using the sol–gel process or grafted onto the surface of mesoporous TiO2 (SBET = 650 m2 g−1). Copper(I) bis(Pphen-Si) complexes were the only complexes that were successfully anchored onto the TiO2 surface because the heterogenization was often ac…

Materials science010405 organic chemistryRenewable Energy Sustainability and the EnvironmentInorganic chemistrychemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesCopper0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryTransition metalPolymer chemistry[CHIM]Chemical SciencesGeneral Materials ScienceChelationHomolepticMesoporous materialHybrid materialComputingMilieux_MISCELLANEOUSBET theory
researchProduct

Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea).

2013

7 pages; International audience; In the protist world, the ciliate Coleps hirtus (phylum Ciliophora, class Prostomatea) synthesizes a peculiar biomineralized test made of alveolar plates, structures located within alveolar vesicles at the cell cortex. Alveolar plates are arranged by overlapping like an armor and they are thought to protect and/or stiffen the cell. Although their morphology is species-specific and of complex architecture, so far almost nothing is known about their genesis, their structure and their elemental and mineral composition. We investigated the genesis of new alveolar plates after cell division and examined cells and isolated alveolar plates by electron microscopy, e…

Biomineralization570Morphology (linguistics)MineralogyColeps hirtus02 engineering and technologyCalcium Carbonatelaw.invention03 medical and health scienceschemistry.chemical_compoundX-Ray DiffractionStructural BiologylawSpectroscopy Fourier Transform InfraredCell cortexCiliophora[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsAlveolar plates030304 developmental biologyCiliate0303 health sciencesProstomateabiologyVesicleCiliateSpectrometry X-Ray Emission500respiratory system021001 nanoscience & nanotechnologybiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/BiomaterialsAmorphous calcium carbonateMicroscopy ElectronchemistryProtozoanBiophysicsAmorphous calcium carbonateElectron microscope0210 nano-technologyBiomineralization
researchProduct

Study of surface layers and ejected powder formed by oxidation of titanium substrates with a pulsed Nd:YAG laser beam.

2009

Laser treatment of a titanium surface at certain conditions initiates the formation of titanium oxide layers as well as micro (nano) scale powder ejected from the surface of the substrate. The resultant morphology of the surface as well as the size and the structure of the particles are all strongly dependent on the treatment parameters (laser fluence, pulse frequency, overlap parameter, etc.). In this study, titanium substrates were treated with an industrial pulsed Nd:YAG laser in air, with varying parameters. Surface layers and ejected materials were compared using scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The rutile phase of TiO(2) dominate…

AnataseMaterials scienceAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural scienceslaw.inventionchemistry.chemical_compoundsymbols.namesakePlasmalaw0103 physical sciencesLaser treatments010302 applied physicstechnology industry and agricultureSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserSurfaces Coatings and FilmsTitanium oxidechemistryRutileNd:YAG laserTitanium dioxidesymbolsTitanium dioxideNanoparticles0210 nano-technologyRaman spectroscopyTitanium
researchProduct

Improving the high temperature oxidation resistance of Ti-β21S by mechanical surface treatment

2020

The improvement of the high temperature oxidation resistance of titanium alloys is currently a technological challenge. Mechanical surface treatments as shot-peening (SP) have shown their ability to improve the behaviour of pure zirconium and titanium. However, shot-peening treatments can induce a significant surface contamination. Laser shock peening (LSP) appears as a good alternative. Here, we have investigated the effect of SP and LSP treatments on the HT oxidation behavior of Ti-β21S. Samples treated by these methods have been compared to untreated ones for long exposures (3000 h) at 700 °C in dry air. The samples placed in a furnace at 700 °C were periodically extracted to be weighed.…

010302 applied physicsSurface (mathematics)Materials scienceChemical engineering020209 energy0103 physical sciences0202 electrical engineering electronic engineering information engineering02 engineering and technologyTA1-2040Engineering (General). Civil engineering (General)01 natural sciencesOxidation resistanceMATEC Web of Conferences
researchProduct

D2 and H2 adsorption capacity and selectivity in CHA zeolites: Effect of Si/Al ratio, cationic composition and temperature

2020

International audience; The work deals with the effect of composition of CHA zeolites on the adsorption and separation of H2 and D2 under cryogenic temperatures. In the first part of this work the effect of Si/Al ratio and cationic composition on single gas adsorption of H2 and D2 was studied at 77.4 K. It was found that the adsorption capacities increase with Al content up to Si/Al = 2.1. Unexpectedly, Na-CHA zeolite with the highest Al content (Si/Al = 1.1) adsorbs only negligible amount because of the collapse of the zeolite structure upon dehydration at 400°C. The Na-and Li-containing chabazites with Si/Al = 2.1 possess similar adsorption capacities. In contrast, progressive replacement…

Work (thermodynamics)ChabaziteMaterials scienceH2-D2 separationAnalytical chemistryH2-D2 coadsorption02 engineering and technology010402 general chemistry01 natural sciencesAdsorptionisotope quantum sievingmedicineGeneral Materials ScienceDehydrationZeoliteCationic polymerizationGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicsmedicine.disease0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryMechanics of MaterialschabaziteComposition (visual arts)0210 nano-technologySelectivityMicroporous and Mesoporous Materials
researchProduct

Dual atmosphere study of the K41X stainless steel for interconnect application in high temperature water vapour electrolysis

2015

Abstract High temperature water vapour electrolysis (HTE) is one of the most efficient technologies for mass hydrogen production. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 °C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a commercial stainless steel, K41X (AISI 441), were tested in HTE dual atmosphere (95%O 2 -5%H 2 0/10%H 2 -90%H 2 O) at 800 °C. The alloy exhibits a very good oxidation resistance compared to single atmosphere tests. However, a supplied electrical current s…

ElectrolysisMaterials scienceRenewable Energy Sustainability and the EnvironmentHigh-temperature corrosionAlloyMetallurgyEnergy Engineering and Power Technologyengineering.materialCondensed Matter Physicslaw.inventionAtmosphereFuel TechnologylawHigh-temperature electrolysisElectrical resistivity and conductivityengineeringWater vaporHydrogen productionInternational Journal of Hydrogen Energy
researchProduct

Comprehensive Study of Poly(2,3,5,6-tetrafluoroaniline): From Electrosynthesis to Heterojunctions and Ammonia Sensing.

2018

In this work, we report for the first time on a comprehensive study of poly(2,3,5,6-tetrafluoroaniline) (PTFANI). Contrary to the nonfluorinated polyaniline (PANI) or its analogues bearing one fluorine atom, PTFANI is a poorly conductive material. We present a comprehensive study of the electrosynthesized PTFANI from its monomer in an acidic aqueous medium. PTFANI was fully characterized by a potential-pH diagram, spectroelectrochemistry, and electrochemical quartz crystal microbalance (EQCM) measurements, as well as by a morphological study. Combined with the X-ray photoelectron spectroscopy (XPS) analysis, it allowed us to understand the redox properties of this polymer compared to those …

Conductive polymerMaterials scienceInorganic chemistry02 engineering and technologyQuartz crystal microbalance010402 general chemistry021001 nanoscience & nanotechnologyElectrosynthesisElectrochemistry01 natural sciencesRedox0104 chemical scienceschemistry.chemical_compoundElectron transferchemistryX-ray photoelectron spectroscopyPolyaniline[CHIM]Chemical SciencesGeneral Materials Science0210 nano-technologyComputingMilieux_MISCELLANEOUSACS applied materialsinterfaces
researchProduct

Influence of the grain orientation spread on the pitting corrosion resistance of duplex stainless steels using electron backscatter diffraction and c…

2013

Abstract The corrosion behavior of UNS S32202 duplex stainless steel was studied by combining electron backscatter diffraction (EBSD) measurements and critical pitting temperature tests at the microscale. The grain orientation spread (GOS) value was determined in grains of both phases from EBSD data. It was shown that austenitic sites containing extremely small ferrite grains having a GOS value greater than 1.3° were precursor sites for pitting in 4 M NaCl. The critical pitting temperature range was 45–90 °C. All the other sites of both phases remained passive up to 100 °C.

AusteniteMaterials scienceDual-phase steelElectron diffractionGeneral Chemical EngineeringMetallurgyPitting corrosionGeneral Materials ScienceGeneral ChemistryAtmospheric temperature rangeMicrostructureCorrosionElectron backscatter diffractionCorrosion Science
researchProduct

High-resolution characterization of the diffusion of light chemical elements in metallic components by scanning microwave microscopy

2014

International audience; An original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions. A significant phase difference in SMM between aluminum and chromium buried patterns has been observed. Moreover this technique was used to characterize a solid solution of a light chemical element (oxygen) in a metal lattice (zirconium). The large solubility of the oxygen in zirconium leads to modifications of the properties of the solid solution that can be measured by the phase shift signal in the SMM technique. The signal obtained in cross-section of an oxidized Zr sample s…

ZirconiumChemistryAnalytical chemistrychemistry.chemical_element[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOxygen[ CHIM.MATE ] Chemical Sciences/Material chemistryNuclear reaction analysis0103 physical sciencesMicroscopyGeneral Materials ScienceLimiting oxygen concentrationSolubility010306 general physics0210 nano-technologyMicrowaveSolid solutionNanoscale
researchProduct

Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment

2014

Abstract The microstructure of grade X4CrNiMo16.5.1 stainless steel was studied at different scales. The chemical composition of the native passive film formed on the different phases was then determined at the microscale. The degree of homogeneity of the native passive film is discussed. Subsequently, the susceptibility to pitting corrosion of X4CrNiMo16.5.1 was quantified using the electrochemical microcell technique. The nature of precursor sites and the morphology of pits were investigated by combining scanning electron microscopy with Electron BackScatter Diffraction and potentiostatic pulse tests. The role of the microstructure and the cold-worked layer generated by polishing in pitti…

Materials scienceScanning electron microscopeGeneral Chemical EngineeringMetallurgyPolishingGeneral ChemistryMartensitic stainless steelengineering.materialMicrostructureCorrosionengineeringPitting corrosionGeneral Materials ScienceTemperingElectron backscatter diffractionCorrosion Science
researchProduct

EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation

2019

Abstract Aluminum‑silicon (Al Si) alloys of high silicon contents are composite materials; they are used whenever high casting properties are required. They are slightly ductile below 8wt%Si. An increase in ductility can be obtained by refining Si-crystals in elaboration or by a further hot working. In the present work, an Al-7wt%Si alloy was processed by Equal Channel Angular Extrusion (ECAE) at temperatures 20 °C and 160 °C up to three passes. The die was formed by two cylindrical channels with characteristic angles Φ = 110° and Ψ = 0. EBSD, X ray diffraction (XRD) and Strain Rate Sensitivity (SRS) were used to characterize the microstructure and the mechanical properties. High levels of …

010302 applied physicsMaterials scienceEqual channel angular extrusionMechanical Engineering02 engineering and technologyStrain rate021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesCastingHot workingMechanics of Materials0103 physical sciencesGeneral Materials ScienceComposite materialDislocation0210 nano-technologyDuctilityElectron backscatter diffractionMaterials Characterization
researchProduct