0000000000195360

AUTHOR

Nagaraj S. Naik

0000-0002-9890-3165

Novel poly (ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste

Abstract Owing to the less energy consumption, positive impact on the environment, and prospect of providing clean water resources, anion exchange membranes (AEMs) are promising materials for acid recovery from various industrial wastewater/effluent. Based on the diffusion dialysis process, AEMs selectively allow rapid proton permeation while efficiently retaining metal ions. To enhance the efficiency of the acid recovery process, precise control of macromolecular architecture and chemical composition that enables high hydrophilicity, proton conductivity through the membrane, and ion exchange capacity is required. In this direction, we report on the one-step fabrication of novel poly (ionic…

research product

The efficient mixed matrix antifouling membrane for surfactant stabilized oil-in-water nanoemulsion separation

Abstract Membrane technology has raised considerable interest in sustainable water purification over the past decade. The development of antifouling membranes is always the basic approach to address the omnipresent bottlenecks of the membrane fouling. In this study, AlSi2O6 nanoparticles were synthesized using a coprecipitation technique and their influence was investigated on the permeation and antifouling properties of ultrafiltration (UF) membranes of polysulfone (PSF). A series of membranes were fabricated with various concentrations (such as 0.0, 2.5, 5 and 7.5 wt%) of AlSi2O6 nanoparticles through diffusion induced phase separation method. The prepared composite membranes demonstrate …

research product

Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal

International audience; Heavy metal removal from water resources is essential for environmental protection and the production of safe drinking water. In this direction, Zinc doped Aluminium Oxide (Zn:Al2O3) nanoparticles were incorporated into Polysulfone (PSf) to prepare mixed matrix membranes for the efficient removal of heavy metals from water. These Zn:Al2O3 nanoparticles prepared by the solution combustion method have a very high surface area (261.44 m2/g) with an approximate size of 50 nm. X-ray Photoelectron Spectroscopy analysis showed that the Al and Zn were in +3 and + 2 oxidation states, respectively. Cross-sectional Scanning Electron Microscopy images revealed the finger-like mo…

research product

Impact of graphitic carbon nitride nanosheets in mixed- matrix membranes for removal of heavy metals from water

International audience; Removal of heavy metal ions from water is being a challenge and Polysulfone (PSf) membranes have shown great potential to remove them from contaminated solutions. In this work, the introduction of Graphitic carbon nitride nanosheets (g-C3N4) into PSf membranes was implemented to improve the permeability and separation performance of PSf membranes. g-C3N4 was incorporated into the membrane matrix via nonsolvent induced phase inversion method. The prepared mixed matrix membranes showed enhanced performances towards water filtration. The incorporation of g-C3N4 into the membrane matrix caused an increase in the desired physicochemical properties like hydrophilicity and …

research product