0000000000198922

AUTHOR

Mojgan Aghazadeh Tabrizi

showing 3 related works from this author

Synthesis and Biological Evaluation of 1-Methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibi…

2008

The 2-(3,4,5-trimethoxybenzoyl)-2-aminoindole nucleus was used as the fundamental structure for the synthesis of compounds modified with respect to positions C-4 to C-7 with different moieties (chloro, methyl, or methoxy). Additional structural variations concerned the indole nitrogen, which was alkylated with small alkyl groups such as methyl or ethyl. We have identified 1-methyl-2-(3,4,5-trimethoxybenzoyl)-3-amino-7-methoxyindole as a new highly potent antiproliferative agent that targets tubulin at the colchicine binding site and leads to apoptotic cell death.

Models MolecularIndolesStereochemistryAlkylationAntimitotic AgentsChemical synthesisMiceStructure-Activity RelationshipBiopolymersTubulinCell Line TumorDrug DiscoveryStructure–activity relationshipAnimalsHumansIndole testBinding SitesbiologyTubulin ModulatorsChemistryBiological activityTubulin ModulatorsTubulinbiology.proteinMolecular MedicineAntimitotic AgentDrug Screening Assays AntitumorColchicineProtein Binding
researchProduct

Synthesis and biological evaluation of 2-(3 ',4 ',5 '-trimethoxybenzoyl)-3-amino 5-aryl thiophenes as a new class of tubulin inhibitors

2006

2-(3',4',5'-Trimethoxybenzoyl)-3-amino-5-aryl/heteroaryl thiophene derivatives were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. SARs were elucidated with various substitutions on the aryl moiety 5-position of the thienyl ring. Substituents at the para-position of the 5-phenyl group showed antiproliferative activity in the order of F=CH(3) > OCH(3)=Br=NO(2) > CF(3)=I > OEt. Several of these compounds led to arrest of HL-60 cells in the G2/M phase of the cell cycle and induction of apoptosis.

Tubulin ModulatorsStereochemistryArylCell CycleApoptosisBiological activityThiophenesCell cycleChemical synthesisTubulin ModulatorsIn vitro- Tubulin Inhibitors -Antiproliferative activity -5-Aryl TiophenesMiceStructure-Activity Relationshipchemistry.chemical_compoundchemistryCell Line TumorDrug DiscoveryAnimalsHumansMolecular MedicineStructure–activity relationshipMoietyDrug Screening Assays Antitumor
researchProduct

Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization.

2007

Two new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)benzo[b]thiophene molecular skeleton and its 3-amino positional isomer were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. Although many more 3-amino derivatives have been synthesized so far, the most promising compound in this series was 2-amino-6-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]thiophene, which inhibits cancer cell growth at subnanomolar concentrations and interacts strongly with tubulin by binding to the colchicine site.

StereochemistryAntimitotic Agents/chemistry Antimitotic Agents/pharmacologymacromolecular substancesThiophenesAntimitotic AgentsChemical synthesischemistry.chemical_compoundMiceRadioligand AssayStructure-Activity RelationshipTubulinCell Line TumorDrug DiscoveryThiopheneStructure–activity relationshipAnimalsHumansCytotoxicityCell ProliferationBinding SitesbiologyBicyclic moleculeChemistryTubulin ModulatorsCell CycleTubulin ModulatorsTubulinbiology.proteinMolecular MedicineAntimitotic AgentDrug Screening Assays AntitumorColchicineProtein BindingJournal of medicinal chemistry
researchProduct