0000000000199043
AUTHOR
Christian Caglevic
Vaccine and immune cell therapy in non-small cell lung cancer
Abstract: Despite new advances in therapeutics, lung cancer remains the first cause of mortality among different types of malignancies. To improve survival, different strategies have been developed such as chemotherapy combinations, targeted therapies and more recently immunotherapy. Immunotherapy is based on the capability of the immune system to differentiate cancer cells from normal cells to fight against the tumor. The two main checkpoint inhibitors that have been widely studied in non-small cell lung cancer (NSCLC) are PD-1/PD-L1 and CTLA-4. However, interactions between tumor and immune system are much more complex with several different elements that take part and probably many new i…
Primary and metastatic brain cancer genomics and emerging biomarkers for immunomodulatory cancer treatment
Abstract: Recent studies with immunomodulatory agents targeting both cytotoxic T-lymphocyte protein 4 (CTLA4) and programmed cell death 1 (PD1)/programmed cell death ligand 1 (PDL1) have shown to be very effective in several cancers revealing an unexpected great activity in patients with both primary and metastatic brain tumors. Combining anti-CTLA4 and anti-PD1 agents as upfront systemic therapy has revealed to further increase the clinical benefit observed with single agent, even at cost of higher toxicity. Since the brain is an immunological specialized area it's crucial to establish the specific composition of the brain tumors' micro environment in order to predict the potential activit…
The potential of neurotrophic tyrosine kinase (NTRK) inhibitors for treating lung cancer
Abstract: Introduction: Molecular alterations in neurotrophic tyrosine kinase (NTRK) genes have been identified in several solid tumors including lung cancer. Pre-clinical and clinical evidence suggested their potential role as oncogenic drivers and predictive biomarkers for targeted inhibition, leading to the clinical development of a new class of compounds blocking the NTRK molecular pathway, which are currently undner early clinical investigation. Area covered: This review describes the biology of the NTRK pathway and its molecular alterations in lung cancer. It focuses on the pre-clinical and clinical development of emerging NTRK inhibitors, which have shown very promising activity in e…
Second-Line Treatment of Non-Small Cell Lung Cancer: Clinical, Pathological, and Molecular Aspects of Nintedanib
Abstract: Lung carcinoma is the leading cause of death by cancer in the world. Nowadays, most patients will experience disease progression during or after first-line chemotherapy demonstrating the need for new, effective second-line treatments. The only approved second-line therapies for patients without targetable oncogenic drivers are docetaxel, gemcitabine, pemetrexed, and erlotinib and for patients with target-specific oncogenes afatinib, osimertinib, crizotinib, alectinib, and ceritinib. In recent years, evidence on the role of antiangiogenic agents have been established as important and effective therapeutic targets in non-small cell lung cancer (NSCLC). Nintedanib is a tyrosine kinas…
Immune checkpoint inhibitors in lung cancer: the holy grail has not yet been found…
Lung cancer is rich in molecular complexities and driven by different abnormal molecular pathways. Personalised medicine has begun to bring new hope for the treatment of patients with lung cancer, especially non-small cell lung cancer (NSCLC). The development of molecularly targeted therapy (small molecules and monoclonal antibodies) has significantly improved outcomes in the metastatic setting for patients with NSCLC whose tumours harbour activated oncogenes such as epidermal growth factor receptor (EGFR) and translocated genes like anaplastic lymphoma kinase (ALK). In addition, immune checkpoint inhibitors have also dramatically changed the therapeutic landscape of NSCLC. In particular, m…
BRAF mutations in non-small cell lung cancer : has finally Janus opened the door?
Abstract: B-Raf mutations occur in about 1-2% of non-small cell lung cancers (NSCLC). These mutations generate a permanent activation of the mitogen activated protein kinase (MAPK) pathway, which promotes tumor growth and proliferation. In the present review, we discuss B-Raf mutation epidemiology, diagnostic methods to detect B-Raf mutations, the role of B-Raf as a driver mutation and a potential therapeutic target in NSCLC. The results of clinical trials involving B-Raf or MAPK pathway inhibitors for the treatment of NSCLC are also discussed. Clinical trials evaluating B-Raf inhibitors in BRAF mutated NSCLC patients have shown promising results, and larger prospective studies are warrante…
Nintedanib in non-small cell lung cancer: from preclinical to approval
Angiogenesis is a driving force of a tumor’s development. Targeting this process is an attractive option, as this is a feature shared by most of the solid tumors. A lot of antiangiogenic drugs have been developed following this path, including bevacizumab, sorafenib, sunitinib, vandetanib, ramucirumab, motesanib and many others. The latest drug of this class to be approved for patients with non-small cell lung cancer (NSCLC) was nintedanib, a triple angiokinase inhibitor. This molecule targets vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factor (FGF) pathways, avoiding the tumor’s switch to normal escape mechanisms. The pharmacokine…