0000000000199515

AUTHOR

Taise Ferreira Rebouças

A plant-wide wastewater treatment plant model for carbon and energy footprint: Model application and scenario analysis

Abstract A new model for accounting carbon and energy footprint of wastewater treatment plants (WWTPs) is proposed. The model quantifies direct and indirect greenhouse gas (GHG) emissions related to biological and physical processes of a WWTP. The model takes into account several innovative aspects with respect to already available literature models: i. kinetic/mass-balances; ii. nitrification as a two-step process; iii. nitrous oxide (N2O) formation during nitrification and denitrification both in dissolved and off-gas forms. A full-scale application has been performed by adopting the case study of a real WWTP. A scenario analysis was performed to quantify the influence of: composition of …

research product

Minimizing membrane bioreactor environmental footprint by multiple objective optimization.

This paper presents a modelling study aimed at minimizing the environmental foot print of a membrane bioreactor (MBR) for wastewater treatment. Specifically, an integrated model for MBR was employed in view of the management optimization of an MBR biological nutrient removal (BNR) pilot plant in terms of operational costs and direct greenhouse gases emissions. The influence of the operational parameters (OPs) on performance indicators (PIs) was investigated by adopting the Extended-FAST sensitivity analysis method. Further, a multi-objective analysis was performed by applying the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The results show-up that the sludge …

research product

Uncertainty and sensitivity analysis for reducing greenhouse gas emissions from wastewater treatment plants.

Abstract This paper presents the sensitivity and uncertainty analysis of a plant-wide mathematical model for wastewater treatment plants (WWTPs). The mathematical model assesses direct and indirect (due to the energy consumption) greenhouse gases (GHG) emissions from a WWTP employing a whole-plant approach. The model includes: i) the kinetic/mass-balance based model regarding nitrogen; ii) two-step nitrification process; iii) N2O formation both during nitrification and denitrification (as dissolved and off-gas concentration). Important model factors have been selected by using the Extended-Fourier Amplitude Sensitivity Testing (FAST) global sensitivity analysis method. A scenario analysis h…

research product

A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge

Abstract A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy con…

research product

Decision support systems (DSS) for wastewater treatment plants - A review of the state of the art.

The use of decision support systems (DSS) allows integrating all the issues related with sustainable development in view of providing a useful support to solve multi-scenario problems. In this work an extensive review on the DSSs applied to wastewater treatment plants (WWTPs) is presented. The main aim of the work is to provide an updated compendium on DSSs in view of supporting researchers and engineers on the selection of the most suitable method to address their management/operation/design problems. Results showed that DSSs were mostly used as a comprehensive tool that is capable of integrating several data and a multi-criteria perspective in order to provide more reliable results. Only …

research product

Aeration control in membrane bioreactor for sustainable environmental footprint

In this study different scenarios were scrutinized to minimize the energy consumption of a membrane bioreactor system for wastewater treatment. Open-loop and closed-loop scenarios were investigated by two-step cascade control strategies based on dissolved oxygen, ammonia and nitrite concentrations. An integrated MBR model which includes also the greenhouse gas formation/emission processes was applied. A substantial energy consumption reduction was obtained for the closed-loop scenarios (32% for Scenario 1 and 82% for Scenario 2). The air flow control based on both ammonia and nitrite concentrations within the aerobic reactor (Scenario 2) provided excellent results in terms of reduction of o…

research product

Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework

International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…

research product